Goto

Collaborating Authors

 Wu, Junyang


Efficient Domain Adaptation for Endoscopic Visual Odometry

arXiv.org Artificial Intelligence

Visual odometry plays a crucial role in endoscopic imaging, yet the scarcity of realistic images with ground truth poses poses a significant challenge. Therefore, domain adaptation offers a promising approach to bridge the pre-operative planning domain with the intra-operative real domain for learning odometry information. However, existing methodologies suffer from inefficiencies in the training time. In this work, an efficient neural style transfer framework for endoscopic visual odometry is proposed, which compresses the time from pre-operative planning to testing phase to less than five minutes. For efficient traing, this work focuses on training modules with only a limited number of real images and we exploit pre-operative prior information to dramatically reduce training duration. Moreover, during the testing phase, we propose a novel Test Time Adaptation (TTA) method to mitigate the gap in lighting conditions between training and testing datasets. Experimental evaluations conducted on two public endoscope datasets showcase that our method achieves state-of-the-art accuracy in visual odometry tasks while boasting the fastest training speeds. These results demonstrate significant promise for intra-operative surgery applications.


Unleashing the Power of Depth and Pose Estimation Neural Networks by Designing Compatible Endoscopic Images

arXiv.org Artificial Intelligence

Deep learning models have witnessed depth and pose estimation framework on unannotated datasets as a effective pathway to succeed in endoscopic navigation. Most current techniques are dedicated to developing more advanced neural networks to improve the accuracy. However, existing methods ignore the special properties of endoscopic images, resulting in an inability to fully unleash the power of neural networks. In this study, we conduct a detail analysis of the properties of endoscopic images and improve the compatibility of images and neural networks, to unleash the power of current neural networks. First, we introcude the Mask Image Modelling (MIM) module, which inputs partial image information instead of complete image information, allowing the network to recover global information from partial pixel information. This enhances the network' s ability to perceive global information and alleviates the phenomenon of local overfitting in convolutional neural networks due to local artifacts. Second, we propose a lightweight neural network to enhance the endoscopic images, to explicitly improve the compatibility between images and neural networks. Extensive experiments are conducted on the three public datasets and one inhouse dataset, and the proposed modules improve baselines by a large margin. Furthermore, the enhanced images we proposed, which have higher network compatibility, can serve as an effective data augmentation method and they are able to extract more stable feature points in traditional feature point matching tasks and achieve outstanding performance.


Real-time Workload Pattern Analysis for Large-scale Cloud Databases

arXiv.org Artificial Intelligence

Hosting database services on cloud systems has become a common practice. This has led to the increasing volume of database workloads, which provides the opportunity for pattern analysis. Discovering workload patterns from a business logic perspective is conducive to better understanding the trends and characteristics of the database system. However, existing workload pattern discovery systems are not suitable for large-scale cloud databases which are commonly employed by the industry. This is because the workload patterns of large-scale cloud databases are generally far more complicated than those of ordinary databases. In this paper, we propose Alibaba Workload Miner (AWM), a real-time system for discovering workload patterns in complicated large-scale workloads. AWM encodes and discovers the SQL query patterns logged from user requests and optimizes the querying processing based on the discovered patterns. First, Data Collection & Preprocessing Module collects streaming query logs and encodes them into high-dimensional feature embeddings with rich semantic contexts and execution features. Next, Online Workload Mining Module separates encoded queries by business groups and discovers the workload patterns for each group. Meanwhile, Offline Training Module collects labels and trains the classification model using the labels. Finally, Pattern-based Optimizing Module optimizes query processing in cloud databases by exploiting discovered patterns. Extensive experimental results on one synthetic dataset and two real-life datasets (extracted from Alibaba Cloud databases) show that AWM enhances the accuracy of pattern discovery by 66% and reduce the latency of online inference by 22%, compared with the state-of-the-arts.


SEA: A Scalable Entity Alignment System

arXiv.org Artificial Intelligence

Entity alignment (EA) aims to find equivalent entities in different knowledge graphs (KGs). State-of-the-art EA approaches generally use Graph Neural Networks (GNNs) to encode entities. However, most of them train the models and evaluate the results in a fullbatch fashion, which prohibits EA from being scalable on largescale datasets. To enhance the usability of GNN-based EA models in real-world applications, we present SEA, a scalable entity alignment system that enables to (i) train large-scale GNNs for EA, (ii) speed up the normalization and the evaluation process, and (iii) report clear results for users to estimate different models and parameter settings. SEA can be run on a computer with merely one graphic card. Moreover, SEA encompasses six state-of-the-art EA models and provides access for users to quickly establish and evaluate their own models. Thus, SEA allows users to perform EA without being involved in tedious implementations, such as negative sampling and GPU-accelerated evaluation. With SEA, users can gain a clear view of the model performance. In the demonstration, we show that SEA is user-friendly and is of high scalability even on computers with limited computational resources.


Unsupervised Entity Alignment for Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

Entity alignment (EA) is a fundamental data integration task that identifies equivalent entities between different knowledge graphs (KGs). Temporal Knowledge graphs (TKGs) extend traditional knowledge graphs by introducing timestamps, which have received increasing attention. State-of-the-art time-aware EA studies have suggested that the temporal information of TKGs facilitates the performance of EA. However, existing studies have not thoroughly exploited the advantages of temporal information in TKGs. Also, they perform EA by pre-aligning entity pairs, which can be labor-intensive and thus inefficient. In this paper, we present DualMatch which effectively fuses the relational and temporal information for EA. DualMatch transfers EA on TKGs into a weighted graph matching problem. More specifically, DualMatch is equipped with an unsupervised method, which achieves EA without necessitating seed alignment. DualMatch has two steps: (i) encoding temporal and relational information into embeddings separately using a novel label-free encoder, Dual-Encoder; and (ii) fusing both information and transforming it into alignment using a novel graph-matching-based decoder, GM-Decoder. DualMatch is able to perform EA on TKGs with or without supervision, due to its capability of effectively capturing temporal information. Extensive experiments on three real-world TKG datasets offer the insight that DualMatch outperforms the state-of-the-art methods in terms of H@1 by 2.4% - 10.7% and MRR by 1.7% - 7.6%, respectively.