Wu, Jiayun
Kandinsky Conformal Prediction: Beyond Class- and Covariate-Conditional Coverage
Bairaktari, Konstantina, Wu, Jiayun, Wu, Zhiwei Steven
Conformal prediction is a powerful distribution-free framework for constructing prediction sets with coverage guarantees. Classical methods, such as split conformal prediction, provide marginal coverage, ensuring that the prediction set contains the label of a random test point with a target probability. However, these guarantees may not hold uniformly across different subpopulations, leading to disparities in coverage. Prior work has explored coverage guarantees conditioned on events related to the covariates and label of the test point. We present Kandinsky conformal prediction, a framework that significantly expands the scope of conditional coverage guarantees. In contrast to Mondrian conformal prediction, which restricts its coverage guarantees to disjoint groups -- reminiscent of the rigid, structured grids of Piet Mondrian's art -- our framework flexibly handles overlapping and fractional group memberships defined jointly on covariates and labels, reflecting the layered, intersecting forms in Wassily Kandinsky's compositions. Our algorithm unifies and extends existing methods, encompassing covariate-based group conditional, class conditional, and Mondrian conformal prediction as special cases, while achieving a minimax-optimal high-probability conditional coverage bound. Finally, we demonstrate the practicality of our approach through empirical evaluation on real-world datasets.
Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
Lin, Yong, Tang, Shange, Lyu, Bohan, Wu, Jiayun, Lin, Hongzhou, Yang, Kaiyu, Li, Jia, Xia, Mengzhou, Chen, Danqi, Arora, Sanjeev, Jin, Chi
We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems. The key challenge in this field is the scarcity of formalized math statements and proofs, which we tackle in the following ways. We train statement formalizers to translate the natural language math problems from Numina into formal language (Lean 4), creating a dataset of 1.64 million formal statements. LLMs are used to check that the formal statements accurately preserve the content of the original natural language problems. We then iteratively build a large dataset of formal proofs by training a series of provers. Each prover succeeds in proving many statements that the previous ones could not, and these new proofs are added to the training set for the next prover. Despite using only supervised fine-tuning, our final prover significantly outperforms the previous best open-source model, DeepSeek-Prover-V1.5, which employs reinforcement learning. On the miniF2F benchmark, our model achieves a success rate of 57.6% (Pass@32), surpassing DeepSeek-Prover-V1.5 by 7.6%. On PutnamBench, Goedel-Prover successfully solves 7 problems (Pass@512), ranking first on the leaderboard. Furthermore, it generates 29.7K formal proofs for Lean Workbook problems, nearly doubling the 15.7K produced by earlier works.
CGCOD: Class-Guided Camouflaged Object Detection
Zhang, Chenxi, Zhang, Qing, Wu, Jiayun, Pang, Youwei
Camouflaged Object Detection (COD) aims to identify objects that blend seamlessly into their surroundings. The inherent visual complexity of camouflaged objects, including their low contrast with the background, diverse textures, and subtle appearance variations, often obscures semantic cues, making accurate segmentation highly challenging. Existing methods primarily rely on visual features, which are insufficient to handle the variability and intricacy of camouflaged objects, leading to unstable object perception and ambiguous segmentation results. To tackle these limitations, we introduce a novel task, class-guided camouflaged object detection (CGCOD), which extends traditional COD task by incorporating object-specific class knowledge to enhance detection robustness and accuracy. To facilitate this task, we present a new dataset, CamoClass, comprising real-world camouflaged objects with class annotations. Furthermore, we propose a multi-stage framework, CGNet, which incorporates a plug-and-play class prompt generator and a simple yet effective class-guided detector. This establishes a new paradigm for COD, bridging the gap between contextual understanding and class-guided detection. Extensive experimental results demonstrate the effectiveness of our flexible framework in improving the performance of proposed and existing detectors by leveraging class-level textual information.
Benign Overfitting in Out-of-Distribution Generalization of Linear Models
Tang, Shange, Wu, Jiayun, Fan, Jianqing, Jin, Chi
Benign overfitting refers to the phenomenon where an over-parameterized model fits the training data perfectly, including noise in the data, but still generalizes well to the unseen test data. While prior work provides some theoretical understanding of this phenomenon under the in-distribution setup, modern machine learning often operates in a more challenging Out-of-Distribution (OOD) regime, where the target (test) distribution can be rather different from the source (training) distribution. In this work, we take an initial step towards understanding benign overfitting in the OOD regime by focusing on the basic setup of over-parameterized linear models under covariate shift. We provide non-asymptotic guarantees proving that benign overfitting occurs in standard ridge regression, even under the OOD regime when the target covariance satisfies certain structural conditions. We identify several vital quantities relating to source and target covariance, which govern the performance of OOD generalization. Our result is sharp, which provably recovers prior in-distribution benign overfitting guarantee [Tsigler and Bartlett, 2023], as well as under-parameterized OOD guarantee [Ge et al., 2024] when specializing to each setup. Moreover, we also present theoretical results for a more general family of target covariance matrix, where standard ridge regression only achieves a slow statistical rate of $O(1/\sqrt{n})$ for the excess risk, while Principal Component Regression (PCR) is guaranteed to achieve the fast rate $O(1/n)$, where $n$ is the number of samples.
Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph
Zheng, Weihuang, Liu, Jiashuo, Li, Jiaxing, Wu, Jiayun, Cui, Peng, Kong, Youyong
Graph Neural Networks (GNNs) have been widely used in node classification tasks, such as advertising recommendation [15], social network anomaly detection [34], etc. However, these GNN models typically assume that the training and test graph data are drawn from the same distribution, which does not always hold in practice. In real-world graph data, sample selection bias [8, 12] as well as graph construction techniques [27, 43] often brings distribution shifts between training nodes and test nodes. For instance, In WebKB [26] datasets, web pages (nodes) and categories (labels) are heavily affected by the university they originate from, leading to distribution shifts among nodes drawn from different universities. Therefore, in order to enhance the practical validity of GNNs, it is of paramount importance to deal with distribution shifts on graph data. To address the distribution shift problem in node classification, recent works [18, 36, 32, 37, 23] borrow the idea of invariant learning methods from the literature of out-of-distribution (OOD) generalization and adopt them on graph-structured data. Invariant learning [1, 19] stems from the causal inference literature, and now becomes one of the key approaches to solving OOD problems on graphs. The core concept is to identify invariant features with stable prediction mechanisms across different environments, thereby mitigating performance degradation under distribution shifts. And most of the works in this line directly apply existing invariant learning algorithms to graph-level classification tasks (major) [18, 32, 23, 41] and node classification tasks (minor) [36, 38].
Bridging Multicalibration and Out-of-distribution Generalization Beyond Covariate Shift
Wu, Jiayun, Liu, Jiashuo, Cui, Peng, Wu, Zhiwei Steven
We establish a new model-agnostic optimization framework for out-of-distribution generalization via multicalibration, a criterion that ensures a predictor is calibrated across a family of overlapping groups. Multicalibration is shown to be associated with robustness of statistical inference under covariate shift. We further establish a link between multicalibration and robustness for prediction tasks both under and beyond covariate shift. We accomplish this by extending multicalibration to incorporate grouping functions that consider covariates and labels jointly. This leads to an equivalence of the extended multicalibration and invariance, an objective for robust learning in existence of concept shift. We show a linear structure of the grouping function class spanned by density ratios, resulting in a unifying framework for robust learning by designing specific grouping functions. We propose MC-Pseudolabel, a post-processing algorithm to achieve both extended multicalibration and out-of-distribution generalization. The algorithm, with lightweight hyperparameters and optimization through a series of supervised regression steps, achieves superior performance on real-world datasets with distribution shift.
A Survey on Evaluation of Out-of-Distribution Generalization
Yu, Han, Liu, Jiashuo, Zhang, Xingxuan, Wu, Jiayun, Cui, Peng
Machine learning models, while progressively advanced, rely heavily on the IID assumption, which is often unfulfilled in practice due to inevitable distribution shifts. This renders them susceptible and untrustworthy for deployment in risk-sensitive applications. Such a significant problem has consequently spawned various branches of works dedicated to developing algorithms capable of Out-of-Distribution (OOD) generalization. Despite these efforts, much less attention has been paid to the evaluation of OOD generalization, which is also a complex and fundamental problem. Its goal is not only to assess whether a model's OOD generalization capability is strong or not, but also to evaluate where a model generalizes well or poorly. This entails characterizing the types of distribution shifts that a model can effectively address, and identifying the safe and risky input regions given a model. This paper serves as the first effort to conduct a comprehensive review of OOD evaluation. We categorize existing research into three paradigms: OOD performance testing, OOD performance prediction, and OOD intrinsic property characterization, according to the availability of test data. Additionally, we briefly discuss OOD evaluation in the context of pretrained models. In closing, we propose several promising directions for future research in OOD evaluation.
Enhancing Distributional Stability among Sub-populations
Liu, Jiashuo, Wu, Jiayun, Peng, Jie, Wu, Xiaoyu, Zheng, Yang, Li, Bo, Cui, Peng
Enhancing the stability of machine learning algorithms under distributional shifts is at the heart of the Out-of-Distribution (OOD) Generalization problem. Derived from causal learning, recent works of invariant learning pursue strict invariance with multiple training environments. Although intuitively reasonable, strong assumptions on the availability and quality of environments are made to learn the strict invariance property. In this work, we come up with the ``distributional stability" notion to mitigate such limitations. It quantifies the stability of prediction mechanisms among sub-populations down to a prescribed scale. Based on this, we propose the learnability assumption and derive the generalization error bound under distribution shifts. Inspired by theoretical analyses, we propose our novel stable risk minimization (SRM) algorithm to enhance the model's stability w.r.t. shifts in prediction mechanisms ($Y|X$-shifts). Experimental results are consistent with our intuition and validate the effectiveness of our algorithm. The code can be found at https://github.com/LJSthu/SRM.
Emergence and Causality in Complex Systems: A Survey on Causal Emergence and Related Quantitative Studies
Yuan, Bing, Jiang, Zhang, Lyu, Aobo, Wu, Jiayun, Wang, Zhipeng, Yang, Mingzhe, Liu, Kaiwei, Mou, Muyun, Cui, Peng
Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of causal emergence. Two key problems are addressed: quantifying causal emergence and identifying it in data. Addressing the latter requires the use of machine learning techniques, thus establishing a connection between causal emergence and artificial intelligence. We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning. Consequently, progress in any of these areas can benefit the others. Potential applications and future perspectives are also discussed in the final section of the review.
Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications
Liu, Jiashuo, Wu, Jiayun, Wang, Tianyu, Zou, Hao, Li, Bo, Cui, Peng
Machine learning algorithms minimizing average risk are susceptible to distributional shifts. Distributionally Robust Optimization (DRO) addresses this issue by optimizing the worst-case risk within an uncertainty set. However, DRO suffers from over-pessimism, leading to low-confidence predictions, poor parameter estimations as well as poor generalization. In this work, we conduct a theoretical analysis of a probable root cause of over-pessimism: excessive focus on noisy samples. To alleviate the impact of noise, we incorporate data geometry into calibration terms in DRO, resulting in our novel Geometry-Calibrated DRO (GCDRO) for regression. We establish the connection between our risk objective and the Helmholtz free energy in statistical physics, and this free-energy-based risk can extend to standard DRO methods. Leveraging gradient flow in Wasserstein space, we develop an approximate minimax optimization algorithm with a bounded error ratio and elucidate how our approach mitigates noisy sample effects. Comprehensive experiments confirm GCDRO's superiority over conventional DRO methods.