Goto

Collaborating Authors

 Wu, Guanlin


Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification

arXiv.org Machine Learning

Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distributional trait mostly drifts the optimal decision boundary and results in an unsatisfactory solution. This raises safety concerns in the network traffic field when previous class imbalance methods hardly deal with numerous minority malicious classes. To alleviate these effects, we design a \textit{group \& reweight} strategy for alleviating class imbalance. Inspired by the group distributionally optimization framework, our approach heuristically clusters classes into groups, iteratively updates the non-parametric weights for separate classes, and optimizes the learning model by minimizing reweighted losses. We theoretically interpret the optimization process from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.


RELAX: Reinforcement Learning Enabled 2D-LiDAR Autonomous System for Parsimonious UAVs

arXiv.org Artificial Intelligence

Unmanned Aerial Vehicles (UAVs) have gained significant prominence in recent years for areas including surveillance, search, rescue, and package delivery. One key aspect in UAV operations shared across all these tasks is the autonomous path planning, which enables UAV to navigate through complex, unknown, and dynamic environments while avoiding obstacles without human control. Despite countless efforts having been devoted to this subject, new challenges are constantly arisen due to the persistent trade-off between performance and cost. And new studies are more urgently needed to develop autonomous system for UAVs with parsimonious sensor setup, which is a major need for wider adoptions. To this end, we propose an end-to-end autonomous framework to enable UAVs with only one single 2D-LiDAR sensor to operate in unknown dynamic environments. More specifically, we break our approach into three stages: a pre-processing Map Constructor; an offline Mission Planner; and an online reinforcement learning (RL)-based Dynamic Obstacle Handler. Experiments show that our approach provides robust and reliable dynamic path planning and obstacle avoidance with only 1/10 of the cost in sensor configuration. The code will be made public upon acceptance.


Spectrum Gaussian Processes Based On Tunable Basis Functions

arXiv.org Machine Learning

Spectral approximation and variational inducing learning for the Gaussian process are two popular methods to reduce computational complexity. However, in previous research, those methods always tend to adopt the orthonormal basis functions, such as eigenvectors in the Hilbert space, in the spectrum method, or decoupled orthogonal components in the variational framework. In this paper, inspired by quantum physics, we introduce a novel basis function, which is tunable, local and bounded, to approximate the kernel function in the Gaussian process. There are two adjustable parameters in these functions, which control their orthogonality to each other and limit their boundedness. And we conduct extensive experiments on open-source datasets to testify its performance. Compared to several state-of-the-art methods, it turns out that the proposed method can obtain satisfactory or even better results, especially with poorly chosen kernel functions.