Goto

Collaborating Authors

 Wu, Fei


Evaluating Test-Time Scaling LLMs for Legal Reasoning: OpenAI o1, DeepSeek-R1, and Beyond

arXiv.org Artificial Intelligence

Recently, Test-Time Scaling Large Language Models (LLMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated exceptional capabilities across various domains and tasks, particularly in reasoning. While these models have shown impressive performance on general language tasks, their effectiveness in specialized fields like legal remains unclear. To address this, we present a preliminary evaluation of LLMs in various legal scenarios, covering both Chinese and English legal tasks. Our analysis includes 9 LLMs and 17 legal tasks, with a focus on newly published and more complex challenges such as multi-defendant legal judgments and legal argument reasoning. Our findings indicate that, despite DeepSeek-R1 and OpenAI o1 being among the most powerful models, their legal reasoning capabilities are still lacking. Specifically, these models score below 80\% on seven Chinese legal reasoning tasks and below 80\% on two English legal reasoning tasks. This suggests that, even among the most advanced reasoning models, legal reasoning abilities remain underdeveloped.


PsychBench: A comprehensive and professional benchmark for evaluating the performance of LLM-assisted psychiatric clinical practice

arXiv.org Artificial Intelligence

The advent of Large Language Models (LLMs) offers potential solutions to address problems such as shortage of medical resources and low diagnostic consistency in psychiatric clinical practice. Despite this potential, a robust and comprehensive benchmarking framework to assess the efficacy of LLMs in authentic psychiatric clinical environments is absent. This has impeded the advancement of specialized LLMs tailored to psychiatric applications. In response to this gap, by incorporating clinical demands in psychiatry and clinical data, we proposed a benchmarking system, PsychBench, to evaluate the practical performance of LLMs in psychiatric clinical settings. We conducted a comprehensive quantitative evaluation of 16 LLMs using PsychBench, and investigated the impact of prompt design, chain-of-thought reasoning, input text length, and domain-specific knowledge fine-tuning on model performance. Through detailed error analysis, we identified strengths and potential limitations of the existing models and suggested directions for improvement. Subsequently, a clinical reader study involving 60 psychiatrists of varying seniority was conducted to further explore the practical benefits of existing LLMs as supportive tools for psychiatrists of varying seniority. Through the quantitative and reader evaluation, we show that while existing models demonstrate significant potential, they are not yet adequate as decision-making tools in psychiatric clinical practice. The reader study further indicates that, as an auxiliary tool, LLM could provide particularly notable support for junior psychiatrists, effectively enhancing their work efficiency and overall clinical quality. To promote research in this area, we will make the dataset and evaluation framework publicly available, with the hope of advancing the application of LLMs in psychiatric clinical settings.


Robust Polyp Detection and Diagnosis through Compositional Prompt-Guided Diffusion Models

arXiv.org Artificial Intelligence

Colorectal cancer (CRC) is a significant global health concern, and early detection through screening plays a critical role in reducing mortality. While deep learning models have shown promise in improving polyp detection, classification, and segmentation, their generalization across diverse clinical environments, particularly with out-of-distribution (OOD) data, remains a challenge. Multi-center datasets like PolypGen have been developed to address these issues, but their collection is costly and time-consuming. Traditional data augmentation techniques provide limited variability, failing to capture the complexity of medical images. Diffusion models have emerged as a promising solution for generating synthetic polyp images, but the image generation process in current models mainly relies on segmentation masks as the condition, limiting their ability to capture the full clinical context. To overcome these limitations, we propose a Progressive Spectrum Diffusion Model (PSDM) that integrates diverse clinical annotations-such as segmentation masks, bounding boxes, and colonoscopy reports-by transforming them into compositional prompts. These prompts are organized into coarse and fine components, allowing the model to capture both broad spatial structures and fine details, generating clinically accurate synthetic images. By augmenting training data with PSDM-generated samples, our model significantly improves polyp detection, classification, and segmentation. For instance, on the PolypGen dataset, PSDM increases the F1 score by 2.12% and the mean average precision by 3.09%, demonstrating superior performance in OOD scenarios and enhanced generalization.


Text-to-SQL Domain Adaptation via Human-LLM Collaborative Data Annotation

arXiv.org Artificial Intelligence

Text-to-SQL models, which parse natural language (NL) questions to executable SQL queries, are increasingly adopted in real-world applications. However, deploying such models in the real world often requires adapting them to the highly specialized database schemas used in specific applications. We find that existing text-to-SQL models experience significant performance drops when applied to new schemas, primarily due to the lack of domain-specific data for fine-tuning. This data scarcity also limits the ability to effectively evaluate model performance in new domains. Continuously obtaining high-quality text-to-SQL data for evolving schemas is prohibitively expensive in real-world scenarios. To bridge this gap, we propose SQLsynth, a human-in-the-loop text-to-SQL data annotation system. SQLsynth streamlines the creation of high-quality text-to-SQL datasets through human-LLM collaboration in a structured workflow. A within-subjects user study comparing SQLsynth with manual annotation and ChatGPT shows that SQLsynth significantly accelerates text-to-SQL data annotation, reduces cognitive load, and produces datasets that are more accurate, natural, and diverse. Our code is available at https://github.com/adobe/nl_sql_analyzer.


InfiR : Crafting Effective Small Language Models and Multimodal Small Language Models in Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have made significant advancements in reasoning capabilities. However, they still face challenges such as high computational demands and privacy concerns. This paper focuses on developing efficient Small Language Models (SLMs) and Multimodal Small Language Models (MSLMs) that retain competitive reasoning abilities. We introduce a novel training pipeline that enhances reasoning capabilities and facilitates deployment on edge devices, achieving state-of-the-art performance while minimizing development costs. \InfR~ aims to advance AI systems by improving reasoning, reducing adoption barriers, and addressing privacy concerns through smaller model sizes. Resources are available at https://github. com/Reallm-Labs/InfiR.


Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) are widely applied in various domains, the safety of LLMs is increasingly attracting attention to avoid their powerful capabilities being misused. Existing jailbreak methods create a forced instruction-following scenario, or search adversarial prompts with prefix or suffix tokens to achieve a specific representation manually or automatically. However, they suffer from low efficiency and explicit jailbreak patterns, far from the real deployment of mass attacks to LLMs. In this paper, we point out that simply rewriting the original instruction can achieve a jailbreak, and we find that this rewriting approach is learnable and transferable. We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs by iteratively exploring the weakness of the LLMs and automatically improving the attacking strategy. The jailbreak is more efficient and hard to identify since no additional features are introduced. Extensive experiments and analysis demonstrate the effectiveness of R2J, and we find that the jailbreak is also transferable to multiple datasets and various types of models with only a few queries. We hope our work motivates further investigation of LLM safety.


Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging

arXiv.org Artificial Intelligence

Achieving balanced alignment of large language models (LLMs) in terms of Helpfulness, Honesty, and Harmlessness (3H optimization) constitutes a cornerstone of responsible AI, with existing methods like data mixture strategies facing limitations including reliance on expert knowledge and conflicting optimization signals. While model merging offers a promising alternative by integrating specialized models, its potential for 3H optimization remains underexplored. This paper establishes the first comprehensive benchmark for model merging in 3H-aligned LLMs, systematically evaluating 15 methods (12 training-free merging and 3 data mixture techniques) across 10 datasets associated with 5 annotation dimensions, 2 LLM families, and 2 training paradigms. Our analysis reveals three pivotal insights: (i) previously overlooked collaborative/conflicting relationships among 3H dimensions, (ii) the consistent superiority of model merging over data mixture approaches in balancing alignment trade-offs, and (iii) the critical role of parameter-level conflict resolution through redundant component pruning and outlier mitigation. Building on these findings, we propose R-TSVM, a Reweighting-enhanced Task Singular Vector Merging method that incorporates outlier-aware parameter weighting and sparsity-adaptive rank selection strategies adapted to the heavy-tailed parameter distribution and sparsity for LLMs, further improving LLM alignment across multiple evaluations. We release our trained models for further exploration.


Knowledge is Power: Harnessing Large Language Models for Enhanced Cognitive Diagnosis

arXiv.org Artificial Intelligence

Cognitive Diagnosis Models (CDMs) are designed to assess students' cognitive states by analyzing their performance across a series of exercises. However, existing CDMs often struggle with diagnosing infrequent students and exercises due to a lack of rich prior knowledge. With the advancement in large language models (LLMs), which possess extensive domain knowledge, their integration into cognitive diagnosis presents a promising opportunity. Despite this potential, integrating LLMs with CDMs poses significant challenges. LLMs are not well-suited for capturing the fine-grained collaborative interactions between students and exercises, and the disparity between the semantic space of LLMs and the behavioral space of CDMs hinders effective integration. To address these issues, we propose a novel Knowledge-enhanced Cognitive Diagnosis (KCD) framework, which is a model-agnostic framework utilizing LLMs to enhance CDMs and compatible with various CDM architectures. The KCD framework operates in two stages: LLM Diagnosis and Cognitive Level Alignment. In the LLM Diagnosis stage, both students and exercises are diagnosed to achieve comprehensive and detailed modeling. In the Cognitive Level Alignment stage, we bridge the gap between the CDMs' behavioral space and the LLMs' semantic space using contrastive learning and mask-reconstruction approaches. Experiments on several real-world datasets demonstrate the effectiveness of our proposed framework.


Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning

arXiv.org Artificial Intelligence

Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity. Meanwhile, vanilla LoRA struggles with task conflicts in multi-task scenarios. Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules. While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks. In this paper, we establish a connection between single LoRA and multi-LoRA MoE, integrating them into a unified framework. We demonstrate that the dynamic routing of multiple LoRAs is functionally equivalent to rank partitioning and block-level activation within a single LoRA. We further empirically demonstrate that finer-grained LoRA partitioning, within the same total and activated parameter constraints, leads to better performance gains across heterogeneous tasks. Building on these findings, we propose Single-ranked Mixture of Experts LoRA (\textbf{SMoRA}), which embeds MoE into LoRA by \textit{treating each rank as an independent expert}. With a \textit{dynamic rank-wise activation} mechanism, SMoRA promotes finer-grained knowledge sharing while mitigating task conflicts. Experiments demonstrate that SMoRA activates fewer parameters yet achieves better performance in multi-task scenarios.


Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models

arXiv.org Artificial Intelligence

Pre-trained Language Models (PLMs) have demonstrated their superiority and versatility in modern Natural Language Processing (NLP), effectively adapting to various downstream tasks through further fine-tuning. Federated Parameter-Efficient Fine-Tuning (FedPEFT) has emerged as a promising solution to address privacy and efficiency challenges in distributed training for PLMs on mobile devices. However, our measurements reveal two key limitations of FedPEFT: heterogeneous data leads to significant performance degradation, and a fixed parameter configuration results in communication inefficiency. To overcome these limitations, we propose FedARA, a novel Federated Adaptive Rank Allocation for parameter-efficient fine-tuning of language models. Specifically, FedARA employs truncated singular value decomposition (SVD) adaptation to enhance flexibility and expressiveness, significantly mitigating the adverse effects of data heterogeneity. Subsequently, it utilizes dynamic rank allocation to progressively identify critical ranks, effectively improving communication efficiency. Lastly, it leverages rank-based module pruning to remove inactive modules, steadily reducing local training time and peak memory usage in each round. Extensive experiments show that FedARA consistently outperforms weak baselines by an average of 8.49\% and strong baselines by 6.95\% across various datasets under data heterogeneity while significantly improving communication efficiency by 2.40\(\times\). Moreover, experiments on AGX Orin, Orin Nano and Raspberry Pi 5 devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90\% and 46.95\%, respectively.