Goto

Collaborating Authors

 Wu, Cheng-Kuang


Answer, Refuse, or Guess? Investigating Risk-Aware Decision Making in Language Models

arXiv.org Artificial Intelligence

Knowing when to answer or refuse is crucial for safe and reliable decision-making language agents. Although prior work has introduced refusal strategies to boost LMs' reliability, how these models adapt their decisions to different risk levels remains underexplored. We formalize the task of risk-aware decision-making, expose critical weaknesses in existing LMs, and propose skill-decomposition solutions to mitigate them. Our findings show that even cutting-edge LMs--both regular and reasoning models--still require explicit prompt chaining to handle the task effectively, revealing the challenges that must be overcome to achieve truly autonomous decision-making agents.


None of the Above, Less of the Right: Parallel Patterns between Humans and LLMs on Multi-Choice Questions Answering

arXiv.org Artificial Intelligence

Multiple-choice exam questions with "None of the above" (NA) options have been extensively studied in educational testing, in which existing research suggests that they better assess true knowledge. However, their impact on Large Language Models (LLMs) evaluation remains underexplored. Through systematic experiments with 28 LLMs on the MMLU benchmark, we examine how NA options affect model performance and confidence calibration. Our analysis reveals that NA options, when used as the correct answer, lead to a consistent 30-50\% performance drop across models regardless of scale--suggesting that LLMs lack the meta-cognitive ability to systematically evaluate and reject all given options when none are correct. This degradation shows strong domain dependence, with minimal impact on mathematical reasoning (14.6\% drop) but severe effects on tasks requiring uncertainty handling like business ethics (48.1\% drop). Our results highlight important implications for benchmark design and raise questions about LLMs' ability to handle uncertainty in real-world applications.


StreamBench: Towards Benchmarking Continuous Improvement of Language Agents

arXiv.org Artificial Intelligence

Recent works have shown that large language model (LLM) agents are able to improve themselves from experience, which is an important ability for continuous enhancement post-deployment. However, existing benchmarks primarily evaluate their innate capabilities and do not assess their ability to improve over time. To address this gap, we introduce StreamBench, a pioneering benchmark designed to evaluate the continuous improvement of LLM agents over an input-feedback sequence. StreamBench simulates an online learning environment where LLMs receive a continuous flow of feedback stream and iteratively enhance their performance. In addition, we propose several simple yet effective baselines for improving LLMs on StreamBench, and provide a comprehensive analysis to identify critical components that contribute to successful streaming strategies. Our work serves as a stepping stone towards developing effective online learning strategies for LLMs, paving the way for more adaptive AI systems in streaming scenarios.


Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models

arXiv.org Artificial Intelligence

In this paper, we investigate the phenomena of "selection biases" in Large Language Models (LLMs), focusing on problems where models are tasked with choosing the optimal option from an ordered sequence. We delve into biases related to option order and token usage, which significantly impact LLMs' decision-making processes. We also quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks. Furthermore, we propose mitigation strategies to enhance model performance. Our key contributions are threefold: 1) Precisely quantifying the influence of option order and token on LLMs, 2) Developing strategies to mitigate the impact of token and order sensitivity to enhance robustness, and 3) Offering a detailed analysis of sensitivity across models and tasks, which informs the creation of more stable and reliable LLM applications for selection problems.


Fidelity-Enriched Contrastive Search: Reconciling the Faithfulness-Diversity Trade-Off in Text Generation

arXiv.org Artificial Intelligence

In this paper, we address the hallucination problem commonly found in natural language generation tasks. Language models often generate fluent and convincing content but can lack consistency with the provided source, resulting in potential inaccuracies. We propose a new decoding method called Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive search framework with context-aware regularization terms. FECS promotes tokens that are semantically similar to the provided source while penalizing repetitiveness in the generated text. We demonstrate its effectiveness across two tasks prone to hallucination: abstractive summarization and dialogue generation. Results show that FECS consistently enhances faithfulness across various language model sizes while maintaining output diversity comparable to well-performing decoding algorithms.


ZARA: Improving Few-Shot Self-Rationalization for Small Language Models

arXiv.org Artificial Intelligence

Language models (LMs) that jointly generate end-task answers as well as free-text rationales are known as self-rationalization models. Recent works demonstrate great performance gain for self-rationalization by few-shot prompting LMs with rationale-augmented exemplars. However, the ability to benefit from explanations only emerges with large-scale LMs, which have poor accessibility. In this work, we explore the less-studied setting of leveraging explanations for small LMs to improve few-shot self-rationalization. We first revisit the relationship between rationales and answers. Inspired by the implicit mental process of how human beings assess explanations, we present a novel approach, Zero-shot Augmentation of Rationale-Answer pairs (ZARA), to automatically construct pseudo-parallel data for self-training by reducing the problem of plausibility judgement to natural language inference. Experimental results show ZARA achieves SOTA performance on the FEB benchmark, for both the task accuracy and the explanation metric. In addition, we conduct human and quantitative evaluation validating ZARA's ability to automatically identify plausible and accurate rationale-answer pairs.


Self-ICL: Zero-Shot In-Context Learning with Self-Generated Demonstrations

arXiv.org Artificial Intelligence

Large language models (LLMs) have exhibited striking in-context learning (ICL) ability to adapt to target tasks with a few input-output demonstrations. For better ICL, different methods are proposed to select representative demonstrations from existing training corpora. However, such settings are not aligned with real-world practices, as end-users usually query LMs without access to demonstration pools. In this work, we introduce Self-ICL -- a simple framework which bootstraps LMs' intrinsic capabilities to perform zero-shot ICL. Given a test input, Self-ICL first prompts the model to generate pseudo-inputs. Next, the model predicts pseudo-labels for the pseudo-inputs via zero-shot prompting. Finally, we perform ICL for the test input with the pseudo-input-label pairs as demonstrations. Evaluation on 23 BIG-Bench Hard tasks shows Self-ICL outperforms zero-shot baselines on both average accuracy and head-to-head comparison. Moreover, with zero-shot chain-of-thought, Self-ICL achieves results comparable to using real demonstrations. Additionally, we conduct a range of analyses to validate Self-ICL's effectiveness and provide insights for its behaviors under different settings.


Large Language Models Perform Diagnostic Reasoning

arXiv.org Artificial Intelligence

We explore the extension of chain-of-thought (CoT) prompting to medical reasoning for the task of automatic diagnosis. Motivated by doctors' underlying reasoning process, we present Diagnostic-Reasoning CoT (DR-CoT). Empirical results demonstrate that by simply prompting large language models trained only on general text corpus with two DR-CoT exemplars, the diagnostic accuracy improves by 15% comparing to standard prompting. Moreover, the gap reaches a pronounced 18% in out-domain settings. Our findings suggest expert-knowledge reasoning in large language models can be elicited through proper promptings.