Not enough data to create a plot.
Try a different view from the menu above.
Wu, Cathy
Model-free Learning of Corridor Clearance: A Near-term Deployment Perspective
Suo, Dajiang, Jayawardana, Vindula, Wu, Cathy
An emerging public health application of connected and automated vehicle (CAV) technologies is to reduce response times of emergency medical service (EMS) by indirectly coordinating traffic. Therefore, in this work we study the CAV-assisted corridor clearance for EMS vehicles from a short term deployment perspective. Existing research on this topic often overlooks the impact of EMS vehicle disruptions on regular traffic, assumes 100% CAV penetration, relies on real-time traffic signal timing data and queue lengths at intersections, and makes various assumptions about traffic settings when deriving optimal model-based CAV control strategies. However, these assumptions pose significant challenges for near-term deployment and limit the real-world applicability of such methods. To overcome these challenges and enhance real-world applicability in near-term, we propose a model-free approach employing deep reinforcement learning (DRL) for designing CAV control strategies, showing its reduced overhead in designing and greater scalability and performance compared to model-based methods. Our qualitative analysis highlights the complexities of designing scalable EMS corridor clearance controllers for diverse traffic settings in which DRL controller provides ease of design compared to the model-based methods. In numerical evaluations, the model-free DRL controller outperforms the model-based counterpart by improving traffic flow and even improving EMS travel times in scenarios when a single CAV is present. Across 19 considered settings, the learned DRL controller excels by 25% in reducing the travel time in six instances, achieving an average improvement of 9%. These findings underscore the potential and promise of model-free DRL strategies in advancing EMS response and traffic flow coordination, with a focus on practical near-term deployment.
Data-Driven Traffic Reconstruction and Kernel Methods for Identifying Stop-and-Go Congestion
Sanchez, Edgar Ramirez, Raghavan, Shreyaa, Wu, Cathy
Identifying stop-and-go events (SAGs) in traffic flow presents an important avenue for advancing data-driven research for climate change mitigation and sustainability, owing to their substantial impact on carbon emissions, travel time, fuel consumption, and roadway safety. In fact, SAGs are estimated to account for 33-50% of highway driving externalities. However, insufficient attention has been paid to precisely quantifying where, when, and how much these SAGs take place--necessary for downstream decision making, such as intervention design and policy analysis. A key challenge is that the data available to researchers and governments are typically sparse and aggregated to a granularity that obscures SAGs. To overcome such data limitations, this study thus explores the use of traffic reconstruction techniques for SAG identification. In particular, we introduce a kernel-based method for identifying spatio-temporal features in traffic and leverage bootstrapping to quantify the uncertainty of the reconstruction process. Experimental results on California highway data demonstrate the promise of the method for capturing SAGs. This work contributes to a foundation for data-driven decision making to advance sustainability of traffic systems.
Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy
Cho, Jung-Hoon, Li, Sirui, Kim, Jeongyun, Wu, Cathy
The recent development of connected and automated vehicle (CAV) technologies has spurred investigations to optimize dense urban traffic. This paper considers advisory autonomy, in which real-time driving advisories are issued to drivers, thus blending the CAV and the human driver. Due to the complexity of traffic systems, recent studies of coordinating CAVs have resorted to leveraging deep reinforcement learning (RL). Advisory autonomy is formalized as zero-order holds, and we consider a range of hold duration from 0.1 to 40 seconds. However, despite the similarity of the higher frequency tasks on CAVs, a direct application of deep RL fails to be generalized to advisory autonomy tasks. We introduce Temporal Transfer Learning (TTL) algorithms to select source tasks, systematically leveraging the temporal structure to solve the full range of tasks. TTL selects the most suitable source tasks to maximize the performance of the range of tasks. We validate our algorithms on diverse mixed-traffic scenarios, demonstrating that TTL more reliably solves the tasks than baselines. This paper underscores the potential of coarse-grained advisory autonomy with TTL in traffic flow optimization.
Learning to Configure Separators in Branch-and-Cut
Li, Sirui, Ouyang, Wenbin, Paulus, Max B., Wu, Cathy
Cutting planes are crucial in solving mixed integer linear programs (MILP) as they facilitate bound improvements on the optimal solution. Modern MILP solvers rely on a variety of separators to generate a diverse set of cutting planes by invoking the separators frequently during the solving process. This work identifies that MILP solvers can be drastically accelerated by appropriately selecting separators to activate. As the combinatorial separator selection space imposes challenges for machine learning, we learn to separate by proposing a novel data-driven strategy to restrict the selection space and a learning-guided algorithm on the restricted space. Our method predicts instance-aware separator configurations which can dynamically adapt during the solve, effectively accelerating the open source MILP solver SCIP by improving the relative solve time up to 72% and 37% on synthetic and real-world MILP benchmarks. Our work complements recent work on learning to select cutting planes and highlights the importance of separator management.
PeRP: Personalized Residual Policies For Congestion Mitigation Through Co-operative Advisory Systems
Hasan, Aamir, Chakraborty, Neeloy, Chen, Haonan, Cho, Jung-Hoon, Wu, Cathy, Driggs-Campbell, Katherine
Intelligent driving systems can be used to mitigate congestion through simple actions, thus improving many socioeconomic factors such as commute time and gas costs. However, these systems assume precise control over autonomous vehicle fleets, and are hence limited in practice as they fail to account for uncertainty in human behavior. Piecewise Constant (PC) Policies address these issues by structurally modeling the likeness of human driving to reduce traffic congestion in dense scenarios to provide action advice to be followed by human drivers. However, PC policies assume that all drivers behave similarly. To this end, we develop a co-operative advisory system based on PC policies with a novel driver trait conditioned Personalized Residual Policy, PeRP. PeRP advises drivers to behave in ways that mitigate traffic congestion. We first infer the driver's intrinsic traits on how they follow instructions in an unsupervised manner with a variational autoencoder. Then, a policy conditioned on the inferred trait adapts the action of the PC policy to provide the driver with a personalized recommendation. Our system is trained in simulation with novel driver modeling of instruction adherence. We show that our approach successfully mitigates congestion while adapting to different driver behaviors, with 4 to 22% improvement in average speed over baselines.
The Braess Paradox in Dynamic Traffic
Zhuang, Dingyi, Huang, Yuzhu, Jayawardana, Vindula, Zhao, Jinhua, Suo, Dajiang, Wu, Cathy
The Braess's Paradox (BP) is the observation that adding one or more roads to the existing road network will counter-intuitively increase traffic congestion and slow down the overall traffic flow. Previously, the existence of the BP is modeled using the static traffic assignment model, which solves for the user equilibrium subject to network flow conservation to find the equilibrium state and distributes all vehicles instantaneously. Such approach neglects the dynamic nature of real-world traffic, including vehicle behaviors and the interaction between vehicles and the infrastructure. As such, this article proposes a dynamic traffic network model and empirically validates the existence of the BP under dynamic traffic. In particular, we use microsimulation environment to study the impacts of an added path on a grid network. We explore how the network flow, vehicle travel time, and network capacity respond, as well as when the BP will occur.
Towards Co-operative Congestion Mitigation
Hasan, Aamir, Chakraborty, Neeloy, Wu, Cathy, Driggs-Campbell, Katherine
The effects of traffic congestion are widespread and are an impedance to everyday life. Piecewise constant driving policies have shown promise in helping mitigate traffic congestion in simulation environments. However, no works currently test these policies in situations involving real human users. Thus, we propose to evaluate these policies through the use of a shared control framework in a collaborative experiment with the human driver and the driving policy aiming to co-operatively mitigate congestion. We intend to use the CARLA simulator alongside the Flow framework to conduct user studies to evaluate the affect of piecewise constant driving policies. As such, we present our in-progress work in building our framework and discuss our proposed plan on evaluating this framework through a human-in-the-loop simulation user study.
Reinforcement Learning for Mixed Autonomy Intersections
Yan, Zhongxia, Wu, Cathy
We propose a model-free reinforcement learning method for controlling mixed autonomy traffic in simulated traffic networks with through-traffic-only two-way and four-way intersections. Our method utilizes multi-agent policy decomposition which allows decentralized control based on local observations for an arbitrary number of controlled vehicles. We demonstrate that, even without reward shaping, reinforcement learning learns to coordinate the vehicles to exhibit traffic signal-like behaviors, achieving near-optimal throughput with 33-50% controlled vehicles. With the help of multi-task learning and transfer learning, we show that this behavior generalizes across inflow rates and size of the traffic network. Our code, models, and videos of results are available at https://github.com/ZhongxiaYan/mixed_autonomy_intersections.
Learning to Delegate for Large-scale Vehicle Routing
Li, Sirui, Yan, Zhongxia, Wu, Cathy
Vehicle routing problems (VRPs) are a class of combinatorial problems with wide practical applications. While previous heuristic or learning-based works achieve decent solutions on small problem instances of up to 100 customers, their performance does not scale to large problems. This article presents a novel learning-augmented local search algorithm to solve large-scale VRP. The method iteratively improves the solution by identifying appropriate subproblems and $\textit{delegating}$ their improvement to a black box subsolver. At each step, we leverage spatial locality to consider only a linear number of subproblems, rather than exponential. We frame subproblem selection as a regression problem and train a Transformer on a generated training set of problem instances. We show that our method achieves state-of-the-art performance, with a speed-up of up to 15 times over strong baselines, on VRPs with sizes ranging from 500 to 3000.
Flow: A Modular Learning Framework for Autonomy in Traffic
Wu, Cathy, Kreidieh, Aboudy, Parvate, Kanaad, Vinitsky, Eugene, Bayen, Alexandre M
The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, due to numerous technical, political, and human factors challenges, new methodologies are needed to design vehicles and transportation systems for these positive outcomes. This article tackles important technical challenges arising from the partial adoption of autonomy (hence termed mixed autonomy, to involve both AVs and human-driven vehicles): partial control, partial observation, complex multi-vehicle interactions, and the sheer variety of traffic settings represented by real-world networks. To enable the study of the full diversity of traffic settings, we first propose to decompose traffic control tasks into modules, which may be configured and composed to create new control tasks of interest. These modules include salient aspects of traffic control tasks: networks, actors, control laws, metrics, initialization, and additional dynamics. Second, we study the potential of model-free deep Reinforcement Learning (RL) methods to address the complexity of traffic dynamics. The resulting modular learning framework is called Flow. Using Flow, we create and study a variety of mixed-autonomy settings, including single-lane, multi-lane, and intersection traffic. In all cases, the learned control law exceeds human driving performance (measured by system-level velocity) by at least 40% with only 5-10% adoption of AVs. In the case of partially-observed single-lane traffic, we show that a low-parameter neural network control law can eliminate commonly observed stop-and-go traffic. In particular, the control laws surpass all known model-based controllers, achieving near-optimal performance across a wide spectrum of vehicle densities (even with a memoryless control law) and generalizing to out-of-distribution vehicle densities.