Goto

Collaborating Authors

 Wong, Alexander


LangDA: Building Context-Awareness via Language for Domain Adaptive Semantic Segmentation

arXiv.org Machine Learning

Unsupervised domain adaptation for semantic segmentation (DASS) aims to transfer knowledge from a label-rich source domain to a target domain with no labels. Two key approaches in DASS are (1) vision-only approaches using masking or multi-resolution crops, and (2) language-based approaches that use generic class-wise prompts informed by target domain (e.g. "a {snowy} photo of a {class}"). However, the former is susceptible to noisy pseudo-labels that are biased to the source domain. The latter does not fully capture the intricate spatial relationships of objects -- key for dense prediction tasks. To this end, we propose LangDA. LangDA addresses these challenges by, first, learning contextual relationships between objects via VLM-generated scene descriptions (e.g. "a pedestrian is on the sidewalk, and the street is lined with buildings."). Second, LangDA aligns the entire image features with text representation of this context-aware scene caption and learns generalized representations via text. With this, LangDA sets the new state-of-the-art across three DASS benchmarks, outperforming existing methods by 2.6%, 1.4% and 3.9%.


Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities

arXiv.org Artificial Intelligence

In the United States, prostate cancer is the second leading cause of deaths in males with a predicted 35,250 deaths in 2024. However, most diagnoses are non-lethal and deemed clinically insignificant which means that the patient will likely not be impacted by the cancer over their lifetime. As a result, numerous research studies have explored the accuracy of predicting clinical significance of prostate cancer based on magnetic resonance imaging (MRI) modalities and deep neural networks. Despite their high performance, these models are not trusted by most clinical scientists as they are trained solely on a single modality whereas clinical scientists often use multiple magnetic resonance imaging modalities during their diagnosis. In this paper, we investigate combining multiple MRI modalities to train a deep learning model to enhance trust in the models for clinically significant prostate cancer prediction. The promising performance and proposed training pipeline showcase the benefits of incorporating multiple MRI modalities for enhanced trust and accuracy.


Cancer-Net SCa-Synth: An Open Access Synthetically Generated 2D Skin Lesion Dataset for Skin Cancer Classification

arXiv.org Artificial Intelligence

In the United States, skin cancer ranks as the most commonly diagnosed cancer, presenting a significant public health issue due to its high rates of occurrence and the risk of serious complications if not caught early. Recent advancements in dataset curation and deep learning have shown promise in quick and accurate detection of skin cancer. However, current open-source datasets have significant class imbalances which impedes the effectiveness of these deep learning models. In healthcare, generative artificial intelligence (AI) models have been employed to create synthetic data, addressing data imbalance in datasets by augmenting underrepresented classes and enhancing the overall quality and performance of machine learning models. In this paper, we build on top of previous work by leveraging new advancements in generative AI, notably Stable Diffusion and DreamBooth. We introduce Cancer-Net SCa-Synth, an open access synthetically generated 2D skin lesion dataset for skin cancer classification. Further analysis on the data effectiveness by comparing the ISIC 2020 test set performance for training with and without these synthetic images for a simple model highlights the benefits of leveraging synthetic data to improve performance.


Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts

arXiv.org Artificial Intelligence

Recent advances in image generation have made diffusion models powerful tools for creating high-quality images. However, their iterative denoising process makes understanding and interpreting their semantic latent spaces more challenging than other generative models, such as GANs. Recent methods have attempted to address this issue by identifying semantically meaningful directions within the latent space. However, they often need manual interpretation or are limited in the number of vectors that can be trained, restricting their scope and utility. This paper proposes a novel framework for unsupervised exploration of diffusion latent spaces. We directly leverage natural language prompts and image captions to map latent directions. This method allows for the automatic understanding of hidden features and supports a broader range of analysis without the need to train specific vectors. Our method provides a more scalable and interpretable understanding of the semantic knowledge encoded within diffusion models, facilitating comprehensive analysis of latent biases and the nuanced representations these models learn. Experimental results show that our framework can uncover hidden patterns and associations in various domains, offering new insights into the interpretability of diffusion model latent spaces.


Understanding the Limitations of Diffusion Concept Algebra Through Food

arXiv.org Artificial Intelligence

Image generation techniques, particularly latent diffusion models, have exploded in popularity in recent years. Many techniques have been developed to manipulate and clarify the semantic concepts these large-scale models learn, offering crucial insights into biases and concept relationships. However, these techniques are often only validated in conventional realms of human or animal faces and artistic style transitions. The food domain offers unique challenges through complex compositions and regional biases, which can shed light on the limitations and opportunities within existing methods. Through the lens of food imagery, we analyze both qualitative and quantitative patterns within a concept traversal technique. We reveal measurable insights into the model's ability to capture and represent the nuances of culinary diversity, while also identifying areas where the model's biases and limitations emerge.


How Much You Ate? Food Portion Estimation on Spoons

arXiv.org Artificial Intelligence

Monitoring dietary intake is a crucial aspect of promoting healthy living. In recent years, advances in computer vision technology have facilitated dietary intake monitoring through the use of images and depth cameras. However, the current state-of-the-art image-based food portion estimation algorithms assume that users take images of their meals one or two times, which can be inconvenient and fail to capture food items that are not visible from a top-down perspective, such as ingredients submerged in a stew. To address these limitations, we introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils, not requiring any change of camera perspective after installation. The shallow depth of utensils provides a more favorable angle for capturing food items, and tracking them on the utensil's surface offers a significantly more accurate estimation of dietary intake without the need for post-meal image capture. The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews. Through a series of experiments, we demonstrate the exceptional potential of our method as a non-invasive, user-friendly, and highly accurate dietary intake monitoring tool.


Step length measurement in the wild using FMCW radar

arXiv.org Artificial Intelligence

With an aging population, numerous assistive and monitoring technologies are under development to enable older adults to age in place. To facilitate aging in place predicting risk factors such as falls, and hospitalization and providing early interventions are important. Much of the work on ambient monitoring for risk prediction has centered on gait speed analysis, utilizing privacy-preserving sensors like radar. Despite compelling evidence that monitoring step length, in addition to gait speed, is crucial for predicting risk, radar-based methods have not explored step length measurement in the home. Furthermore, laboratory experiments on step length measurement using radars are limited to proof of concept studies with few healthy subjects. To address this gap, a radar-based step length measurement system for the home is proposed based on detection and tracking using radar point cloud, followed by Doppler speed profiling of the torso to obtain step lengths in the home. The proposed method was evaluated in a clinical environment, involving 35 frail older adults, to establish its validity. Additionally, the method was assessed in people's homes, with 21 frail older adults who had participated in the clinical assessment. The proposed radar-based step length measurement method was compared to the gold standard Zeno Walkway Gait Analysis System, revealing a 4.5cm/8.3% error in a clinical setting. Furthermore, it exhibited excellent reliability (ICC(2,k)=0.91, 95% CI 0.82 to 0.96) in uncontrolled home settings. The method also proved accurate in uncontrolled home settings, as indicated by a strong agreement (ICC(3,k)=0.81 (95% CI 0.53 to 0.92)) between home measurements and in-clinic assessments.


NAS-NeRF: Generative Neural Architecture Search for Neural Radiance Fields

arXiv.org Artificial Intelligence

Neural radiance fields (NeRFs) enable high-quality novel view synthesis, but their high computational complexity limits deployability. While existing neural-based solutions strive for efficiency, they use one-size-fits-all architectures regardless of scene complexity. The same architecture may be unnecessarily large for simple scenes but insufficient for complex ones. Thus, there is a need to dynamically optimize the neural network component of NeRFs to achieve a balance between computational complexity and specific targets for synthesis quality. We introduce NAS-NeRF, a generative neural architecture search strategy that generates compact, scene-specialized NeRF architectures by balancing architecture complexity and target synthesis quality metrics. Our method incorporates constraints on target metrics and budgets to guide the search towards architectures tailored for each scene. Experiments on the Blender synthetic dataset show the proposed NAS-NeRF can generate architectures up to 5.74$\times$ smaller, with 4.19$\times$ fewer FLOPs, and 1.93$\times$ faster on a GPU than baseline NeRFs, without suffering a drop in SSIM. Furthermore, we illustrate that NAS-NeRF can also achieve architectures up to 23$\times$ smaller, with 22$\times$ fewer FLOPs, and 4.7$\times$ faster than baseline NeRFs with only a 5.3% average SSIM drop. Our source code is also made publicly available at https://saeejithnair.github.io/NAS-NeRF.


DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary Intelligence

arXiv.org Artificial Intelligence

We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning for efficiently training and evolving populations of UNIMAL agents. Our approach utilizes Proximal Policy Optimization (PPO) for individual agent learning and pairs it with a tournament selection-based generational learning mechanism to foster morphological evolution. By building on Nvidia's Isaac Gym, DARLEI leverages GPU accelerated simulation to achieve over 20x speedup using just a single workstation, compared to previous work which required large distributed CPU clusters. We systematically characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies. For example, by enabling inter-agent collisions within the simulator, we find that we can simulate some multi-agent interactions between the same morphology, and see how it influences individual agent capabilities and long-term evolutionary adaptation. While current results demonstrate limited diversity across generations, we hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments, and create a platform that allows for coevolving populations and investigating emergent behaviours in them. Our source code is also made publicly at https://saeejithnair.github.io/darlei.


COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data

arXiv.org Artificial Intelligence

Since the World Health Organization declared COVID-19 a pandemic in 2020, the global community has faced ongoing challenges in controlling and mitigating the transmission of the SARS-CoV-2 virus, as well as its evolving subvariants and recombinants. A significant challenge during the pandemic has not only been the accurate detection of positive cases but also the efficient prediction of risks associated with complications and patient survival probabilities. These tasks entail considerable clinical resource allocation and attention.In this study, we introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models. We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization, utilizing clinical and biochemical data in a transparent, systematic approach. The proposed approach advances machine learning model design by seamlessly integrating domain expertise with explainability tools, enabling model decisions to be based on key biomarkers. This fosters a more transparent and interpretable decision-making process made by machines specifically for medical applications.