Goto

Collaborating Authors

 Wolf, M.


Observation of high-energy neutrinos from the Galactic plane

arXiv.org Artificial Intelligence

The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth's atmosphere, has been a mystery for over a century. Due to deflection in interstellar magnetic fields, cosmic rays from the Milky Way arrive at Earth from random directions. However, near their sources and during propagation, cosmic rays interact with matter and produce high-energy neutrinos. We search for neutrino emission using machine learning techniques applied to ten years of data from the IceCube Neutrino Observatory. We identify neutrino emission from the Galactic plane at the 4.5$\sigma$ level of significance, by comparing diffuse emission models to a background-only hypothesis. The signal is consistent with modeled diffuse emission from the Galactic plane, but could also arise from a population of unresolved point sources.


Demand Forecasting of individual Probability Density Functions with Machine Learning

arXiv.org Machine Learning

Demand forecasting is a central component for many aspects of supply chain operations, as it provides crucial input for subsequent decision making like ordering processes. While machine learning methods can significantly improve prediction accuracy over traditional time series forecasting, the calculated predictions are often just point estimations for the conditional mean of the underlying probability distribution, and the most powerful approaches, like deep learning, are usually opaque in terms of how its individual predictions can be interpreted. Using the novel supervised machine learning method "Cyclic Boosting", complete individual probability density functions can be predicted instead of single numbers. While metrics evaluating point estimates are widely used, methods for assessing the accuracy of predicted distributions are rare and this work proposes new techniques for both qualitative and quantitative evaluation methods. Additionally, each single prediction obtained with this framework is explainable. This is a major benefit in particular for practitioners, as this allows them to avoid "black-box" models and understand the contributing factors for each individual prediction.