Witty, Sam
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions
Agrawal, Raj, Witty, Sam, Zane, Andy, Bingham, Eli
Many practical problems involve estimating low dimensional statistical quantities with high-dimensional models and datasets. Several approaches address these estimation tasks based on the theory of influence functions, such as debiased/double ML or targeted minimum loss estimation. This paper introduces \textit{Monte Carlo Efficient Influence Functions} (MC-EIF), a fully automated technique for approximating efficient influence functions that integrates seamlessly with existing differentiable probabilistic programming systems. MC-EIF automates efficient statistical estimation for a broad class of models and target functionals that would previously require rigorous custom analysis. We prove that MC-EIF is consistent, and that estimators using MC-EIF achieve optimal $\sqrt{N}$ convergence rates. We show empirically that estimators using MC-EIF are at parity with estimators using analytic EIFs. Finally, we demonstrate a novel capstone example using MC-EIF for optimal portfolio selection.
A Simulation-Based Test of Identifiability for Bayesian Causal Inference
Witty, Sam, Jensen, David, Mansinghka, Vikash
This paper introduces a procedure for testing the identifiability of Bayesian models for causal inference. Although the do-calculus is sound and complete given a causal graph, many practical assumptions cannot be expressed in terms of graph structure alone, such as the assumptions required by instrumental variable designs, regression discontinuity designs, and within-subjects designs. We present simulation-based identifiability (SBI), a fully automated identification test based on a particle optimization scheme with simulated observations. This approach expresses causal assumptions as priors over functions in a structural causal model, including flexible priors using Gaussian processes. We prove that SBI is asymptotically sound and complete, and produces practical finite-sample bounds. We also show empirically that SBI agrees with known results in graph-based identification as well as with widely-held intuitions for designs in which graph-based methods are inconclusive.
Causal Inference using Gaussian Processes with Structured Latent Confounders
Witty, Sam, Takatsu, Kenta, Jensen, David, Mansinghka, Vikash
Latent confounders---unobserved variables that influence both treatment and outcome---can bias estimates of causal effects. In some cases, these confounders are shared across observations, e.g. all students taking a course are influenced by the course's difficulty in addition to any educational interventions they receive individually. This paper shows how to semiparametrically model latent confounders that have this structure and thereby improve estimates of causal effects. The key innovations are a hierarchical Bayesian model, Gaussian processes with structured latent confounders (GP-SLC), and a Monte Carlo inference algorithm for this model based on elliptical slice sampling. GP-SLC provides principled Bayesian uncertainty estimates of individual treatment effect with minimal assumptions about the functional forms relating confounders, covariates, treatment, and outcome. Finally, this paper shows GP-SLC is competitive with or more accurate than widely used causal inference techniques on three benchmark datasets, including the Infant Health and Development Program and a dataset showing the effect of changing temperatures on state-wide energy consumption across New England.
Measuring and Characterizing Generalization in Deep Reinforcement Learning
Witty, Sam, Lee, Jun Ki, Tosch, Emma, Atrey, Akanksha, Littman, Michael, Jensen, David
Deep reinforcement-learning methods have achieved remarkable performance on challenging control tasks. Observations of the resulting behavior give the impression that the agent has constructed a generalized representation that supports insightful action decisions. We re-examine what is meant by generalization in RL, and propose several definitions based on an agent's performance in on-policy, off-policy, and unreachable states. We propose a set of practical methods for evaluating agents with these definitions of generalization. We demonstrate these techniques on a common benchmark task for deep RL, and we show that the learned networks make poor decisions for states that differ only slightly from on-policy states, even though those states are not selected adversarially. Taken together, these results call into question the extent to which deep Q-networks learn generalized representations, and suggest that more experimentation and analysis is necessary before claims of representation learning can be supported.