Goto

Collaborating Authors

 Williams, Joseph


Large Language Model Agents for Improving Engagement with Behavior Change Interventions: Application to Digital Mindfulness

arXiv.org Artificial Intelligence

Although engagement in self-directed wellness exercises typically declines over time, integrating social support such as coaching can sustain it. However, traditional forms of support are often inaccessible due to the high costs and complex coordination. Large Language Models (LLMs) show promise in providing human-like dialogues that could emulate social support. Yet, in-depth, in situ investigations of LLMs to support behavior change remain underexplored. We conducted two randomized experiments to assess the impact of LLM agents on user engagement with mindfulness exercises. First, a single-session study, involved 502 crowdworkers; second, a three-week study, included 54 participants. We explored two types of LLM agents: one providing information and another facilitating self-reflection. Both agents enhanced users' intentions to practice mindfulness. However, only the information-providing LLM, featuring a friendly persona, significantly improved engagement with the exercises. Our findings suggest that specific LLM agents may bridge the social support gap in digital health interventions.


Modeling human function learning with Gaussian processes

Neural Information Processing Systems

Accounts of how people learn functional relationships between continuous variables have tended to focus on two possibilities: that people are estimating explicit functions, or that they are simply performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a Gaussian process model of human function learning that combines the strengths of both approaches.