Goto

Collaborating Authors

 Willcox, Karen


Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks

arXiv.org Artificial Intelligence

We propose a scalable framework for the learning of high-dimensional parametric maps via adaptively constructed residual network (ResNet) maps between reduced bases of the inputs and outputs. When just few training data are available, it is beneficial to have a compact parametrization in order to ameliorate the ill-posedness of the neural network training problem. By linearly restricting high-dimensional maps to informed reduced bases of the inputs, one can compress high-dimensional maps in a constructive way that can be used to detect appropriate basis ranks, equipped with rigorous error estimates. A scalable neural network learning framework is thus to learn the nonlinear compressed reduced basis mapping. Unlike the reduced basis construction, however, neural network constructions are not guaranteed to reduce errors by adding representation power, making it difficult to achieve good practical performance. Inspired by recent approximation theory that connects ResNets to sequential minimizing flows, we present an adaptive ResNet construction algorithm. This algorithm allows for depth-wise enrichment of the neural network approximation, in a manner that can achieve good practical performance by first training a shallow network and then adapting. We prove universal approximation of the associated neural network class for $L^2_\nu$ functions on compact sets. Our overall framework allows for constructive means to detect appropriate breadth and depth, and related compact parametrizations of neural networks, significantly reducing the need for architectural hyperparameter tuning. Numerical experiments for parametric PDE problems and a 3D CFD wing design optimization parametric map demonstrate that the proposed methodology can achieve remarkably high accuracy for limited training data, and outperformed other neural network strategies we compared against.


Learning physics-based reduced-order models for a single-injector combustion process

arXiv.org Machine Learning

This paper presents a physics-based data-driven method to learn predictive reduced-order models (ROMs) from high-fidelity simulations, and illustrates it in the challenging context of a single-injector combustion process. The method combines the perspectives of model reduction and machine learning. Model reduction brings in the physics of the problem, constraining the ROM predictions to lie on a subspace defined by the governing equations. This is achieved by defining the ROM in proper orthogonal decomposition (POD) coordinates, which embed the rich physics information contained in solution snapshots of a high-fidelity computational fluid dynamics (CFD) model. The machine learning perspective brings the flexibility to use transformed physical variables to define the POD basis. This is in contrast to traditional model reduction approaches that are constrained to use the physical variables of the high-fidelity code. Combining the two perspectives, the approach identifies a set of transformed physical variables that expose quadratic structure in the combustion governing equations and learns a quadratic ROM from transformed snapshot data. This learning does not require access to the high-fidelity model implementation. Numerical experiments show that the ROM accurately predicts temperature, pressure, velocity, species concentrations, and the limit-cycle amplitude, with speedups of more than five orders of magnitude over high-fidelity models. Moreover, ROM-predicted pressure traces accurately match the phase of the pressure signal and yield good approximations of the limit-cycle amplitude.


Contour location via entropy reduction leveraging multiple information sources

Neural Information Processing Systems

We introduce an algorithm to locate contours of functions that are expensive to evaluate. The problem of locating contours arises in many applications, including classification, constrained optimization, and performance analysis of mechanical and dynamical systems (reliability, probability of failure, stability, etc.). Our algorithm locates contours using information from multiple sources, which are available in the form of relatively inexpensive, biased, and possibly noisy approximations to the original function. Considering multiple information sources can lead to significant cost savings. We also introduce the concept of contour entropy, a formal measure of uncertainty about the location of the zero contour of a function approximated by a statistical surrogate model.


Contour location via entropy reduction leveraging multiple information sources

Neural Information Processing Systems

We introduce an algorithm to locate contours of functions that are expensive to evaluate. The problem of locating contours arises in many applications, including classification, constrained optimization, and performance analysis of mechanical and dynamical systems (reliability, probability of failure, stability, etc.). Our algorithm locates contours using information from multiple sources, which are available in the form of relatively inexpensive, biased, and possibly noisy approximations to the original function. Considering multiple information sources can lead to significant cost savings. We also introduce the concept of contour entropy, a formal measure of uncertainty about the location of the zero contour of a function approximated by a statistical surrogate model. Our algorithm locates contours efficiently by maximizing the reduction of contour entropy per unit cost.


Lookahead Bayesian Optimization with Inequality Constraints

Neural Information Processing Systems

We consider the task of optimizing an objective function subject to inequality constraints when both the objective and the constraints are expensive to evaluate. Bayesian optimization (BO) is a popular way to tackle optimization problems with expensive objective function evaluations, but has mostly been applied to unconstrained problems. Several BO approaches have been proposed to address expensive constraints but are limited to greedy strategies maximizing immediate reward. To address this limitation, we propose a lookahead approach that selects the next evaluation in order to maximize the long-term feasible reduction of the objective function. We present numerical experiments demonstrating the performance improvements of such a lookahead approach compared to several greedy BO algorithms, including constrained expected improvement (EIC) and predictive entropy search with constraint (PESC).


Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach

Neural Information Processing Systems

We consider the problem of optimizing an expensive objective function when a finite budget of total evaluations is prescribed. In that context, the optimal solution strategy for Bayesian optimization can be formulated as a dynamic programming instance. This results in a complex problem with uncountable, dimension-increasing state space and an uncountable control space. We show how to approximate the solution of this dynamic programming problem using rollout, and propose rollout heuristics specifically designed for the Bayesian optimization setting. We present numerical experiments showing that the resulting algorithm for optimization with a finite budget outperforms several popular Bayesian optimization algorithms.