Goto

Collaborating Authors

 Wijaya, Derry


A Multi-Labeled Dataset for Indonesian Discourse: Examining Toxicity, Polarization, and Demographics Information

arXiv.org Artificial Intelligence

Polarization is defined as divisive opinions held by two or more groups on substantive issues. As the world's third-largest democracy, Indonesia faces growing concerns about the interplay between political polarization and online toxicity, which is often directed at vulnerable minority groups. Despite the importance of this issue, previous NLP research has not fully explored the relationship between toxicity and polarization. To bridge this gap, we present a novel multi-label Indonesian dataset that incorporates toxicity, polarization, and annotator demographic information. Benchmarking this dataset using BERT-base models and large language models (LLMs) shows that polarization information enhances toxicity classification, and vice versa. Furthermore, providing demographic information significantly improves the performance of polarization classification.


NusaAksara: A Multimodal and Multilingual Benchmark for Preserving Indonesian Indigenous Scripts

arXiv.org Artificial Intelligence

Indonesia is rich in languages and scripts. However, most NLP progress has been made using romanized text. In this paper, we present NusaAksara, a novel public benchmark for Indonesian languages that includes their original scripts. Our benchmark covers both text and image modalities and encompasses diverse tasks such as image segmentation, OCR, transliteration, translation, and language identification. Our data is constructed by human experts through rigorous steps. NusaAksara covers 8 scripts across 7 languages, including low-resource languages not commonly seen in NLP benchmarks. Although unsupported by Unicode, the Lampung script is included in this dataset. We benchmark our data across several models, from LLMs and VLMs such as GPT-4o, Llama 3.2, and Aya 23 to task-specific systems such as PP-OCR and LangID, and show that most NLP technologies cannot handle Indonesia's local scripts, with many achieving near-zero performance.


DebiasPI: Inference-time Debiasing by Prompt Iteration of a Text-to-Image Generative Model

arXiv.org Artificial Intelligence

Ethical intervention prompting has emerged as a tool to counter demographic biases of text-to-image generative AI models. Existing solutions either require to retrain the model or struggle to generate images that reflect desired distributions on gender and race. We propose an inference-time process called DebiasPI for Debiasing-by-Prompt-Iteration that provides prompt intervention by enabling the user to control the distributions of individuals' demographic attributes in image generation. DebiasPI keeps track of which attributes have been generated either by probing the internal state of the model or by using external attribute classifiers. Its control loop guides the text-to-image model to select not yet sufficiently represented attributes, With DebiasPI, we were able to create images with equal representations of race and gender that visualize challenging concepts of news headlines. We also experimented with the attributes age, body type, profession, and skin tone, and measured how attributes change when our intervention prompt targets the distribution of an unrelated attribute type. We found, for example, if the text-to-image model is asked to balance racial representation, gender representation improves but the skin tone becomes less diverse. Attempts to cover a wide range of skin colors with various intervention prompts showed that the model struggles to generate the palest skin tones. We conducted various ablation studies, in which we removed DebiasPI's attribute control, that reveal the model's propensity to generate young, male characters.


Could We Have Had Better Multilingual LLMs If English Was Not the Central Language?

arXiv.org Artificial Intelligence

Large Language Models (LLMs) demonstrate strong machine translation capabilities on languages they are trained on. However, the impact of factors beyond training data size on translation performance remains a topic of debate, especially concerning languages not directly encountered during training. Our study delves into Llama2's translation capabilities. By modeling a linear relationship between linguistic feature distances and machine translation scores, we ask ourselves if there are potentially better central languages for LLMs other than English. Our experiments show that the 7B Llama2 model yields above 10 BLEU when translating into all languages it has seen, which rarely happens for languages it has not seen. Most translation improvements into unseen languages come from scaling up the model size rather than instruction tuning or increasing shot count. Furthermore, our correlation analysis reveals that syntactic similarity is not the only linguistic factor that strongly correlates with machine translation scores. Interestingly, we discovered that under specific circumstances, some languages (e.g. Swedish, Catalan), despite having significantly less training data, exhibit comparable correlation levels to English. These insights challenge the prevailing landscape of LLMs, suggesting that models centered around languages other than English could provide a more efficient foundation for multilingual applications.


Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability

arXiv.org Artificial Intelligence

While language models (LMs) can sometimes generate factually correct text and estimate truth values of individual claims, these generally do not reflect a globally coherent, manipulable model of the world. As a consequence, current LMs also generate incorrect or nonsensical content, and are difficult to edit and bring up to date. We present a method called Deductive Closure Training (DCT) that uses LMs themselves to identify implications of (and contradictions within) the text that they generate, yielding an efficient self-supervised procedure for improving LM factuality. Given a collection of seed documents, DCT prompts LMs to generate additional text implied by these documents, reason globally about the correctness of this generated text, and finally fine-tune on text inferred to be correct. Given seed documents from a trusted source, DCT provides a tool for supervised model updating; if seed documents are sampled from the LM itself, DCT enables fully unsupervised fine-tuning for improved coherence and accuracy. Across the CREAK, MQUaKE, and Reversal Curse datasets, supervised DCT improves LM fact verification and text generation accuracy by 3-26%; on CREAK fully unsupervised DCT improves verification accuracy by 12%. These results show that LMs' reasoning capabilities during inference can be leveraged during training to improve their reliability.


An Empirical study of Unsupervised Neural Machine Translation: analyzing NMT output, model's behavior and sentences' contribution

arXiv.org Artificial Intelligence

Unsupervised Neural Machine Translation (UNMT) focuses on improving NMT results under the assumption there is no human translated parallel data, yet little work has been done so far in highlighting its advantages compared to supervised methods and analyzing its output in aspects other than translation accuracy. We focus on three very diverse languages, French, Gujarati, and Kazakh, and train bilingual NMT models, to and from English, with various levels of supervision, in high- and low- resource setups, measure quality of the NMT output and compare the generated sequences' word order and semantic similarity to source and reference sentences. We also use Layer-wise Relevance Propagation to evaluate the source and target sentences' contribution to the result, expanding the findings of previous works to the UNMT paradigm.


Relevance-guided Neural Machine Translation

arXiv.org Artificial Intelligence

LRP was introduced by Bach et al. (2015), Explanations & Explanation-guided training Unsupervised Neural Machine Translation Several previous works outline and summarize (UNMT) has seen remarkable progress in recent the findings of explainability and interpetabilityrelated years, with a very large number of methods research in NLP (Belinkov et al., 2020; Sun proposed aiming to NMT when parallel data are et al., 2021b; Tenney et al., 2020; Madsen et al., few or non-existent for certain language pairs 2021; Danilevsky et al., 2020; Qian et al., 2021). Training particular interest, and the focus of our work, are techniques such as Back-Translation (Sennrich those that along with measuring feature importance et al., 2015) and Auto-Encoding have been widely and distinguishing relevant from irrelevant features, studied, in order to efficiently train NMT models are utilized to augment the intermediate learned under those data scarcity conditions to obtain high features, and improve model performance or quality translation results.


COVID-19 Vaccine Misinformation in Middle Income Countries

arXiv.org Artificial Intelligence

This paper introduces a multilingual dataset of COVID-19 vaccine misinformation, consisting of annotated tweets from three middle-income countries: Brazil, Indonesia, and Nigeria. The expertly curated dataset includes annotations for 5,952 tweets, assessing their relevance to COVID-19 vaccines, presence of misinformation, and the themes of the misinformation. To address challenges posed by domain specificity, the low-resource setting, and data imbalance, we adopt two approaches for developing COVID-19 vaccine misinformation detection models: domain-specific pre-training and text augmentation using a large language model. Our best misinformation detection models demonstrate improvements ranging from 2.7 to 15.9 percentage points in macro F1-score compared to the baseline models. Additionally, we apply our misinformation detection models in a large-scale study of 19 million unlabeled tweets from the three countries between 2020 and 2022, showcasing the practical application of our dataset and models for detecting and analyzing vaccine misinformation in multiple countries and languages. Our analysis indicates that percentage changes in the number of new COVID-19 cases are positively associated with COVID-19 vaccine misinformation rates in a staggered manner for Brazil and Indonesia, and there are significant positive associations between the misinformation rates across the three countries.


DUnE: Dataset for Unified Editing

arXiv.org Artificial Intelligence

Even the most advanced language models remain susceptible to errors necessitating to modify these models without initiating a comprehensive retraining process. Model editing refers to the modification of a model's knowledge or representations in a manner that produces the desired outcomes. Prior research primarily centered around editing factual data e.g. "Messi plays for Inter Miami" confining the definition of an edit to a knowledge triplet i.e. (subject, object, relation). However, as the applications of language models expand, so do the diverse ways in which we wish to edit and refine their outputs. In this study, we broaden the scope of the editing problem to include an array of editing cases such as debiasing and rectifying reasoning errors and define an edit as any natural language expression that solicits a change in the model's outputs. We are introducing DUnE-an editing benchmark where edits are natural language sentences and propose that DUnE presents a challenging yet relevant task. To substantiate this claim, we conduct an extensive series of experiments testing various editing approaches to address DUnE, demonstrating their respective strengths and weaknesses. We show that retrieval-augmented language modeling can outperform specialized editing techniques and neither set of approaches has fully solved the generalized editing problem covered by our benchmark.


Explain-then-Translate: An Analysis on Improving Program Translation with Self-generated Explanations

arXiv.org Artificial Intelligence

This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12% on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages.