Goto

Collaborating Authors

 Widmer, Gerhard


Exploring Performance-Complexity Trade-Offs in Sound Event Detection

arXiv.org Artificial Intelligence

We target the problem of developing new low-complexity networks for the sound event detection task. Our goal is to meticulously analyze the performance-complexity trade-off, aiming to be competitive with the large state-of-the-art models, at a fraction of the computational requirements. We find that low-complexity convolutional models previously proposed for audio tagging can be effectively adapted for event detection (which requires frame-wise prediction) by adjusting convolutional strides, removing the global pooling, and, importantly, adding a sequence model before the (now frame-wise) classification heads. Systematic experiments reveal that the best choice for the sequence model type depends on which complexity metric is most important for the given application. We also investigate the impact of enhanced training strategies such as knowledge distillation. In the end, we show that combined with an optimized training strategy, we can reach event detection performance comparable to state-of-the-art transformers while requiring only around 5% of the parameters. We release all our pre-trained models and the code for reproducing this work to support future research in low-complexity sound event detection at https://github.com/theMoro/EfficientSED.


Creating a Good Teacher for Knowledge Distillation in Acoustic Scene Classification

arXiv.org Artificial Intelligence

The DCASE23 challenge's [1] Low-Complexity Acoustic Scene Classificat ion task focuses on utilizing the TAU Urban Acoustic Scenes 2022 Mobile development dataset (TAU22) [2]. This dataset comprises one-second audio snippets from ten distinct acoustic scenes. In an attempt to make the models deployable on edge devices, a comple xity limit on the models is enforced: models are constrained to ha ve no more than 128,000 parameters and 30 million multiply-accum ulate operations (MMACs) for the inference of a 1-second audio sni p-pet. Among other model compression techniques such as Quantization [3] and Pruning [4], Knowledge Distillation (KD) [ 5-7] proved to be a particularly well-suited technique to improv e the performance of a low-complexity model in ASC. In a standard KD setting, a low-complexity model learns to mimic the teacher by minimizing a weighted sum of hard label l oss and distillation loss. While the soft targets are usually ob tained by one or multiple possibly complex teacher models, the distil lation loss tries to match the student predictions with the compute d soft targets based on the Kullback-Leibler divergence. Jung et al. [8] demonstrate that soft targets in a teacher-st udent setup benefit the learning process since one-hot labels do no t reflect the blurred decision boundaries between different acousti c scenes. Knowledge distillation has also been a very popular method i n the DCASE challenge submissions.


Estimating Musical Surprisal in Audio

arXiv.org Artificial Intelligence

In modeling musical surprisal expectancy with computational methods, it has been proposed to use the information content (IC) of one-step predictions from an autoregressive model as a proxy for surprisal in symbolic music. With an appropriately chosen model, the IC of musical events has been shown to correlate with human perception of surprise and complexity aspects, including tonal and rhythmic complexity. This work investigates whether an analogous methodology can be applied to music audio. We train an autoregressive Transformer model to predict compressed latent audio representations of a pretrained autoencoder network. We verify learning effects by estimating the decrease in IC with repetitions. We investigate the mean IC of musical segment types (e.g., A or B) and find that segment types appearing later in a piece have a higher IC than earlier ones on average. We investigate the IC's relation to audio and musical features and find it correlated with timbral variations and loudness and, to a lesser extent, dissonance, rhythmic complexity, and onset density related to audio and musical features. Finally, we investigate if the IC can predict EEG responses to songs and thus model humans' surprisal in music. We provide code for our method on github.com/sonycslparis/audioic.


Perception-Inspired Graph Convolution for Music Understanding Tasks

arXiv.org Artificial Intelligence

We propose a new graph convolutional block, called MusGConv, specifically designed for the efficient processing of musical score data and motivated by general perceptual principles. It focuses on two fundamental dimensions of music, pitch and rhythm, and considers both relative and absolute representations of these components. We evaluate our approach on four different musical understanding problems: monophonic voice separation, harmonic analysis, cadence detection, and composer identification which, in abstract terms, translate to different graph learning problems, namely, node classification, link prediction, and graph classification. Our experiments demonstrate that MusGConv improves the performance on three of the aforementioned tasks while being conceptually very simple and efficient. We interpret this as evidence that it is beneficial to include perception-informed processing of fundamental musical concepts when developing graph network applications on musical score data.


Are we describing the same sound? An analysis of word embedding spaces of expressive piano performance

arXiv.org Artificial Intelligence

Semantic embeddings play a crucial role in natural language-based information retrieval. Embedding models represent words and contexts as vectors whose spatial configuration is derived from the distribution of words in large text corpora. While such representations are generally very powerful, they might fail to account for fine-grained domain-specific nuances. In this article, we investigate this uncertainty for the domain of characterizations of expressive piano performance. Using a music research dataset of free text performance characterizations and a follow-up study sorting the annotations into clusters, we derive a ground truth for a domain-specific semantic similarity structure. We test five embedding models and their similarity structure for correspondence with the ground truth. We further assess the effects of contextualizing prompts, hubness reduction, cross-modal similarity, and k-means clustering. The quality of embedding models shows great variability with respect to this task; more general models perform better than domain-adapted ones and the best model configurations reach human-level agreement.


Dynamic Convolutional Neural Networks as Efficient Pre-trained Audio Models

arXiv.org Artificial Intelligence

The introduction of large-scale audio datasets, such as AudioSet, paved the way for Transformers to conquer the audio domain and replace CNNs as the state-of-the-art neural network architecture for many tasks. Audio Spectrogram Transformers are excellent at exploiting large datasets, creating powerful pre-trained models that surpass CNNs when fine-tuned on downstream tasks. However, current popular Audio Spectrogram Transformers are demanding in terms of computational complexity compared to CNNs. Recently, we have shown that, by employing Transformer-to-CNN Knowledge Distillation, efficient CNNs can catch up with and even outperform Transformers on large datasets. In this work, we extend this line of research and increase the capacity of efficient CNNs by introducing dynamic CNN blocks, constructed of dynamic non-linearities, dynamic convolutions and attention mechanisms. We show that these dynamic CNNs outperform traditional efficient CNNs, in terms of the performance-complexity trade-off and parameter efficiency, at the task of audio tagging on the large-scale AudioSet. Our experiments further indicate that the introduced dynamic CNNs achieve better performance on downstream tasks and scale up well, attaining Transformer performance and even outperforming them on AudioSet and several downstream tasks.


Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval

arXiv.org Artificial Intelligence

A range of applications of multi-modal music information retrieval is centred around the problem of connecting large collections of sheet music (images) to corresponding audio recordings, that is, identifying pairs of audio and score excerpts that refer to the same musical content. One of the typical and most recent approaches to this task employs cross-modal deep learning architectures to learn joint embedding spaces that link the two distinct modalities - audio and sheet music images. While there has been steady improvement on this front over the past years, a number of open problems still prevent large-scale employment of this methodology. In this article we attempt to provide an insightful examination of the current developments on audio-sheet music retrieval via deep learning methods. We first identify a set of main challenges on the road towards robust and large-scale cross-modal music retrieval in real scenarios. We then highlight the steps we have taken so far to address some of these challenges, documenting step-by-step improvement along several dimensions. We conclude by analysing the remaining challenges and present ideas for solving these, in order to pave the way to a unified and robust methodology for cross-modal music retrieval.


Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems

arXiv.org Artificial Intelligence

Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.


Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval

arXiv.org Artificial Intelligence

Many applications of cross-modal music retrieval are related to connecting sheet music images to audio recordings. A typical and recent approach to this is to learn, via deep neural networks, a joint embedding space that correlates short fixed-size snippets of audio and sheet music by means of an appropriate similarity structure. However, two challenges that arise out of this strategy are the requirement of strongly aligned data to train the networks, and the inherent discrepancies of musical content between audio and sheet music snippets caused by local and global tempo differences. In this paper, we address these two shortcomings by designing a cross-modal recurrent network that learns joint embeddings that can summarize longer passages of corresponding audio and sheet music. The benefits of our method are that it only requires weakly aligned audio-sheet music pairs, as well as that the recurrent network handles the non-linearities caused by tempo variations between audio and sheet music. We conduct a number of experiments on synthetic and real piano data and scores, showing that our proposed recurrent method leads to more accurate retrieval in all possible configurations.


Exploring Sampling Techniques for Generating Melodies with a Transformer Language Model

arXiv.org Artificial Intelligence

Research in natural language processing has demonstrated that the quality of generations from trained autoregressive language models is significantly influenced by the used sampling strategy. In this study, we investigate the impact of different sampling techniques on musical qualities such as diversity and structure. To accomplish this, we train a high-capacity transformer model on a vast collection of highly-structured Irish folk melodies and analyze the musical qualities of the samples generated using distribution truncation sampling techniques. Specifically, we use nucleus sampling, the recently proposed "typical sampling", and conventional ancestral sampling. We evaluate the effect of these sampling strategies in two scenarios: optimal circumstances with a well-calibrated model and suboptimal circumstances where we systematically degrade the model's performance. We assess the generated samples using objective and subjective evaluations. We discover that probability truncation techniques may restrict diversity and structural patterns in optimal circumstances, but may also produce more musical samples in suboptimal circumstances.