Wen Dong
Using Social Dynamics to Make Individual Predictions: Variational Inference with a Stochastic Kinetic Model
Zhen Xu, Wen Dong, Sargur N. Srihari
Social dynamics is concerned primarily with interactions among individuals and the resulting group behaviors, modeling the temporal evolution of social systems via the interactions of individuals within these systems. In particular, the availability of large-scale data from social networks and sensor networks offers an unprecedented opportunity to predict state-changing events at the individual level. Examples of such events include disease transmission, opinion transition in elections, and rumor propagation. Unlike previous research focusing on the collective effects of social systems, this study makes efficient inferences at the individual level. In order to cope with dynamic interactions among a large number of individuals, we introduce the stochastic kinetic model to capture adaptive transition probabilities and propose an efficient variational inference algorithm the complexity of which grows linearly -- rather than exponentially-- with the number of individuals. To validate this method, we have performed epidemic-dynamics experiments on wireless sensor network data collected from more than ten thousand people over three years. The proposed algorithm was used to track disease transmission and predict the probability of infection for each individual. Our results demonstrate that this method is more efficient than sampling while nonetheless achieving high accuracy.
Expectation Propagation with Stochastic Kinetic Model in Complex Interaction Systems
Le Fang, Fan Yang, Wen Dong, Tong Guan, Chunming Qiao
Technological breakthroughs allow us to collect data with increasing spatiotemporal resolution from complex interaction systems. The combination of highresolution observations, expressive dynamic models, and efficient machine learning algorithms can lead to crucial insights into complex interaction dynamics and the functions of these systems. In this paper, we formulate the dynamics of a complex interacting network as a stochastic process driven by a sequence of events, and develop expectation propagation algorithms to make inferences from noisy observations. To avoid getting stuck at a local optimum, we formulate the problem of minimizing Bethe free energy as a constrained primal problem and take advantage of the concavity of dual problem in the feasible domain of dual variables guaranteed by duality theorem. Our expectation propagation algorithms demonstrate better performance in inferring the interaction dynamics in complex transportation networks than competing models such as particle filter, extended Kalman filter, and deep neural networks.
Expectation Propagation with Stochastic Kinetic Model in Complex Interaction Systems
Le Fang, Fan Yang, Wen Dong, Tong Guan, Chunming Qiao
Technological breakthroughs allow us to collect data with increasing spatiotemporal resolution from complex interaction systems. The combination of highresolution observations, expressive dynamic models, and efficient machine learning algorithms can lead to crucial insights into complex interaction dynamics and the functions of these systems. In this paper, we formulate the dynamics of a complex interacting network as a stochastic process driven by a sequence of events, and develop expectation propagation algorithms to make inferences from noisy observations. To avoid getting stuck at a local optimum, we formulate the problem of minimizing Bethe free energy as a constrained primal problem and take advantage of the concavity of dual problem in the feasible domain of dual variables guaranteed by duality theorem. Our expectation propagation algorithms demonstrate better performance in inferring the interaction dynamics in complex transportation networks than competing models such as particle filter, extended Kalman filter, and deep neural networks.