Wen, Yue
Exploring Embodied Emotional Communication: A Human-oriented Review of Mediated Social Touch
He, Liwen, Guo, Zichun, Mo, Yanru, Wen, Yue, Wang, Yun
This paper offers a structured understanding of mediated social touch (MST) using a human-oriented approach, through an extensive review of literature spanning tactile interfaces, emotional information, mapping mechanisms, and the dynamics of human-human and human-robot interactions. By investigating the existing and exploratory mapping strategies of the 37 selected MST cases, we established the emotional expression space of MSTs that accommodated a diverse spectrum of emotions by integrating the categorical and Valence-arousal models, showcasing how emotional cues can be translated into tactile signals. Based on the expressive capacity of MSTs, a practical design space was structured encompassing factors such as the body locations, device form, tactile modalities, and parameters. We also proposed various design strategies for MSTs including workflow, evaluation methods, and ethical and cultural considerations, as well as several future research directions. MSTs' potential is reflected not only in conveying emotional information but also in fostering empathy, comfort, and connection in both human-human and human-robot interactions. This paper aims to serve as a comprehensive reference for design researchers and practitioners, which helps expand the scope of emotional communication of MSTs, facilitating the exploration of diverse applications of affective haptics, and enhancing the naturalness and sociability of haptic interaction.
KN-LIO: Geometric Kinematics and Neural Field Coupled LiDAR-Inertial Odometry
Wang, Zhong, Ren, Lele, Wen, Yue, Wang, Hesheng
Recent advancements in LiDAR-Inertial Odometry (LIO) have boosted a large amount of applications. However, traditional LIO systems tend to focus more on localization rather than mapping, with maps consisting mostly of sparse geometric elements, which is not ideal for downstream tasks. Recent emerging neural field technology has great potential in dense mapping, but pure LiDAR mapping is difficult to work on high-dynamic vehicles. To mitigate this challenge, we present a new solution that tightly couples geometric kinematics with neural fields to enhance simultaneous state estimation and dense mapping capabilities. We propose both semi-coupled and tightly coupled Kinematic-Neural LIO (KN-LIO) systems that leverage online SDF decoding and iterated error-state Kalman filtering to fuse laser and inertial data. Our KN-LIO minimizes information loss and improves accuracy in state estimation, while also accommodating asynchronous multi-LiDAR inputs. Evaluations on diverse high-dynamic datasets demonstrate that our KN-LIO achieves performance on par with or superior to existing state-of-the-art solutions in pose estimation and offers improved dense mapping accuracy over pure LiDAR-based methods. The relevant code and datasets will be made available at https://**.
Haptic Transparency and Interaction Force Control for a Lower-Limb Exoskeleton
Küçüktabak, Emek Barış, Wen, Yue, Kim, Sangjoon J., Short, Matthew, Ludvig, Daniel, Hargrove, Levi, Perreault, Eric, Lynch, Kevin, Pons, Jose
Controlling the interaction forces between a human and an exoskeleton is crucial for providing transparency or adjusting assistance or resistance levels. However, it is an open problem to control the interaction forces of lower-limb exoskeletons designed for unrestricted overground walking. For these types of exoskeletons, it is challenging to implement force/torque sensors at every contact between the user and the exoskeleton for direct force measurement. Moreover, it is important to compensate for the exoskeleton's whole-body gravitational and dynamical forces, especially for heavy lower-limb exoskeletons. Previous works either simplified the dynamic model by treating the legs as independent double pendulums, or they did not close the loop with interaction force feedback. The proposed whole-exoskeleton closed-loop compensation (WECC) method calculates the interaction torques during the complete gait cycle by using whole-body dynamics and joint torque measurements on a hip-knee exoskeleton. Furthermore, it uses a constrained optimization scheme to track desired interaction torques in a closed loop while considering physical and safety constraints. We evaluated the haptic transparency and dynamic interaction torque tracking of WECC control on three subjects. We also compared the performance of WECC with a controller based on a simplified dynamic model and a passive version of the exoskeleton. The WECC controller results in a consistently low absolute interaction torque error during the whole gait cycle for both zero and nonzero desired interaction torques. In contrast, the simplified controller yields poor performance in tracking desired interaction torques during the stance phase.
Virtual Physical Coupling of Two Lower-Limb Exoskeletons
Küçüktabak, Emek Barış, Wen, Yue, Short, Matthew, Demirbaş, Efe, Lynch, Kevin, Pons, Jose
Physical interaction between individuals plays an important role in human motor learning and performance during shared tasks. Using robotic devices, researchers have studied the effects of dyadic haptic interaction mostly focusing on the upper-limb. Developing infrastructure that enables physical interactions between multiple individuals' lower limbs can extend the previous work and facilitate investigation of new dyadic lower-limb rehabilitation schemes. We designed a system to render haptic interactions between two users while they walk in multi-joint lower-limb exoskeletons. Specifically, we developed an infrastructure where desired interaction torques are commanded to the individual lower-limb exoskeletons based on the users' kinematics and the properties of the virtual coupling. In this pilot study, we demonstrated the capacity of the platform to render different haptic properties (e.g., soft and hard), different haptic connection types (e.g., bidirectional and unidirectional), and connections expressed in joint space and in task space. With haptic connection, dyads generated synchronized movement, and the difference between joint angles decreased as the virtual stiffness increased. This is the first study where multi-joint dyadic haptic interactions are created between lower-limb exoskeletons. This platform will be used to investigate effects of haptic interaction on motor learning and task performance during walking, a complex and meaningful task for gait rehabilitation.