Goto

Collaborating Authors

 Wen, Xin


Finetuning Generative Trajectory Model with Reinforcement Learning from Human Feedback

arXiv.org Artificial Intelligence

Generating human-like and adaptive trajectories is essential for autonomous driving in dynamic environments. While generative models have shown promise in synthesizing feasible trajectories, they often fail to capture the nuanced variability of human driving styles due to dataset biases and distributional shifts. To address this, we introduce TrajHF, a human feedback-driven finetuning framework for generative trajectory models, designed to align motion planning with diverse driving preferences. TrajHF incorporates multi-conditional denoiser and reinforcement learning with human feedback to refine multi-modal trajectory generation beyond conventional imitation learning. This enables better alignment with human driving preferences while maintaining safety and feasibility constraints. TrajHF achieves PDMS of 93.95 on NavSim benchmark, significantly exceeding other methods. TrajHF sets a new paradigm for personalized and adaptable trajectory generation in autonomous driving.


A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning

arXiv.org Artificial Intelligence

Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear. Through systematic evaluation, we find that while DINO and iBOT outperform MAE across visuomotor control and perception tasks, they struggle when trained on non-(single-)object-centric (NOC) data--a limitation strongly correlated with their diminished ability to learn object-centric representations. This investigation indicates that the ability to form object-centric representations from the non-object-centric robotics dataset is the key to success for PVMs. Motivated by this discovery, we designed SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck to reduce the number of prototypes to encourage the emergence of objectness as well as cross-view consistency regularization for encouraging multiview invariance. Our experiments encompass pre-training on object-centric, scene-centric, web-crawled, and ego-centric data. Across all settings, our approach learns transferrable representations and achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations. When scaled up with million-scale datasets, our method also demonstrates superior data efficiency and scalability. Our code and models are publicly available at https://github.com/CVMI-Lab/SlotMIM.


Generalizing Motion Planners with Mixture of Experts for Autonomous Driving

arXiv.org Artificial Intelligence

Large real-world driving datasets have sparked significant research into various aspects of data-driven motion planners for autonomous driving. These include data augmentation, model architecture, reward design, training strategies, and planner pipelines. These planners promise better generalizations on complicated and few-shot cases than previous methods. However, experiment results show that many of these approaches produce limited generalization abilities in planning performance due to overly complex designs or training paradigms. In this paper, we review and benchmark previous methods focusing on generalizations. The experimental results indicate that as models are appropriately scaled, many design elements become redundant. We introduce StateTransformer-2 (STR2), a scalable, decoder-only motion planner that uses a Vision Transformer (ViT) encoder and a mixture-of-experts (MoE) causal Transformer architecture. The MoE backbone addresses modality collapse and reward balancing by expert routing during training. Extensive experiments on the NuPlan dataset show that our method generalizes better than previous approaches across different test sets and closed-loop simulations. Furthermore, we assess its scalability on billions of real-world urban driving scenarios, demonstrating consistent accuracy improvements as both data and model size grow.


Generalization Beyond Data Imbalance: A Controlled Study on CLIP for Transferable Insights

arXiv.org Artificial Intelligence

Severe data imbalance naturally exists among web-scale vision-language datasets. Despite this, we find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning, and demonstrates significant effectiveness in learning generalizable representations. With an aim to investigate the reasons behind this finding, we conduct controlled experiments to study various underlying factors, and reveal that CLIP's pretext task forms a dynamic classification problem wherein only a subset of classes is present in training. This isolates the bias from dominant classes and implicitly balances the learning signal. Furthermore, the robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts, which are inaccessible to supervised learning. Our study not only uncovers the mechanisms behind CLIP's generalizability beyond data imbalance but also provides transferable insights for the research community. The findings are validated in both supervised and self-supervised learning, enabling models trained on imbalanced data to achieve CLIP-level performance on diverse recognition tasks.


Parametric Classification for Generalized Category Discovery: A Baseline Study

arXiv.org Artificial Intelligence

Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples. Previous studies argued that parametric classifiers are prone to overfitting to seen categories, and endorsed using a non-parametric classifier formed with semi-supervised k-means. However, in this study, we investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem. We demonstrate that two prediction biases exist: the classifier tends to predict seen classes more often, and produces an imbalanced distribution across seen and novel categories. Based on these findings, we propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers. We hope the investigation and proposed simple framework can serve as a strong baseline to facilitate future studies in this field. Our code is available at: https://github.com/CVMI-Lab/SimGCD.


What If the TV Was Off? Examining Counterfactual Reasoning Abilities of Multi-modal Language Models

arXiv.org Artificial Intelligence

Counterfactual reasoning, a fundamental aspect of human cognition, involves contemplating alternatives to established facts or past events, significantly enhancing our abilities in planning and decision-making. In light of the advancements in current multi-modal large language models, we explore their effectiveness in counterfactual reasoning. To facilitate this investigation, we introduce a novel dataset, C-VQA, specifically designed to test the counterfactual reasoning capabilities of modern multi-modal large language models. This dataset is constructed by infusing original questions with counterfactual presuppositions, spanning various types such as numerical and boolean queries. It encompasses a mix of real and synthetic data, representing a wide range of difficulty levels. Our thorough evaluations of contemporary vision-language models using this dataset have revealed substantial performance drops, with some models showing up to a 40% decrease, highlighting a significant gap between current models and human-like vision reasoning capabilities. We hope our dataset will serve as a vital benchmark for evaluating the counterfactual reasoning capabilities of models. Code and dataset are publicly available at https://bzhao.me/C-VQA/.


An Improved Neural Network Model Based On CNN Using For Fruit Sugar Degree Detection

arXiv.org Artificial Intelligence

Artificial Intelligence(AI) widely applies in Image Classification and Recognition, Text Understanding and Natural Language Processing, which makes great progress. In this paper, we introduced AI into the fruit quality detection field. We designed a fruit sugar degree regression model using an Artificial Neural Network based on spectra of fruits within the visible/near-infrared(V/NIR)range. After analysis of fruit spectra, we innovatively proposed a new neural network structure: low layers consist of a Multilayer Perceptron(MLP), a middle layer is a 2-dimensional correlation matrix layer, and high layers consist of several Convolutional Neural Network(CNN) layers. In this study, we used fruit sugar value as a detection target, collecting two fruits called Gan Nan Navel and Tian Shan Pear as samples, doing experiments respectively, and comparing their results. We used Analysis of Variance(ANOVA) to evaluate the reliability of the dataset we collected. Then, we tried multiple strategies to process spectrum data, evaluating their effects. In this paper, we tried to add Wavelet Decomposition(WD) to reduce feature dimensions and a Genetic Algorithm(GA) to find excellent features. Then, we compared Neural Network models with traditional Partial Least Squares(PLS) based models. We also compared the neural network structure we designed(MLP-CNN) with other traditional neural network structures. In this paper, we proposed a new evaluation standard derived from dataset standard deviation(STD) for evaluating detection performance, validating the viability of using an artificial neural network model to do fruit sugar degree nondestructive detection.


Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

arXiv.org Artificial Intelligence

Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.