Wen, Haomin
Foundation Models for Spatio-Temporal Data Science: A Tutorial and Survey
Liang, Yuxuan, Wen, Haomin, Xia, Yutong, Jin, Ming, Yang, Bin, Salim, Flora, Wen, Qingsong, Pan, Shirui, Cong, Gao
Spatio-Temporal (ST) data science, which includes sensing, managing, and mining large-scale data across space and time, is fundamental to understanding complex systems in domains such as urban computing, climate science, and intelligent transportation. Traditional deep learning approaches have significantly advanced this field, particularly in the stage of ST data mining. However, these models remain task-specific and often require extensive labeled data. Inspired by the success of Foundation Models (FM), especially large language models, researchers have begun exploring the concept of Spatio-Temporal Foundation Models (STFMs) to enhance adaptability and generalization across diverse ST tasks. Unlike prior architectures, STFMs empower the entire workflow of ST data science, ranging from data sensing, management, to mining, thereby offering a more holistic and scalable approach. Despite rapid progress, a systematic study of STFMs for ST data science remains lacking. This survey aims to provide a comprehensive review of STFMs, categorizing existing methodologies and identifying key research directions to advance ST general intelligence.
Vision-Enhanced Time Series Forecasting via Latent Diffusion Models
Ruan, Weilin, Zhong, Siru, Wen, Haomin, Liang, Yuxuan
Diffusion models have recently emerged as powerful frameworks for generating high-quality images. While recent studies have explored their application to time series forecasting, these approaches face significant challenges in cross-modal modeling and transforming visual information effectively to capture temporal patterns. In this paper, we propose LDM4TS, a novel framework that leverages the powerful image reconstruction capabilities of latent diffusion models for vision-enhanced time series forecasting. Instead of introducing external visual data, we are the first to use complementary transformation techniques to convert time series into multi-view visual representations, allowing the model to exploit the rich feature extraction capabilities of the pre-trained vision encoder. Subsequently, these representations are reconstructed using a latent diffusion model with a cross-modal conditioning mechanism as well as a fusion module. Experimental results demonstrate that LDM4TS outperforms various specialized forecasting models for time series forecasting tasks.
Embracing Large Language Models in Traffic Flow Forecasting
Zhao, Yusheng, Luo, Xiao, Wen, Haomin, Xiao, Zhiping, Ju, Wei, Zhang, Ming
Traffic flow forecasting aims to predict future traffic flows based on the historical traffic conditions and the road network. It is an important problem in intelligent transportation systems, with a plethora of methods been proposed. Existing efforts mainly focus on capturing and utilizing spatio-temporal dependencies to predict future traffic flows. Though promising, they fall short in adapting to test-time environmental changes of traffic conditions. To tackle this challenge, we propose to introduce large language models (LLMs) to help traffic flow forecasting and design a novel method named Large Language Model Enhanced Traffic Flow Predictor (LEAF). LEAF adopts two branches, capturing different spatio-temporal relations using graph and hypergraph structures respectively. The two branches are first pre-trained individually, and during test-time, they yield different predictions. Based on these predictions, a large language model is used to select the most likely result. Then, a ranking loss is applied as the learning objective to enhance the prediction ability of the two branches. Extensive experiments on several datasets demonstrate the effectiveness of the proposed LEAF.
DRL4AOI: A DRL Framework for Semantic-aware AOI Segmentation in Location-Based Services
Lin, Youfang, Fu, Jinji, Wen, Haomin, Wang, Jiyuan, Wei, Zhenjie, Qiang, Yuting, Mao, Xiaowei, Wu, Lixia, Hu, Haoyuan, Liang, Yuxuan, Wan, Huaiyu
In Location-Based Services (LBS), such as food delivery, a fundamental task is segmenting Areas of Interest (AOIs), aiming at partitioning the urban geographical spaces into non-overlapping regions. Traditional AOI segmentation algorithms primarily rely on road networks to partition urban areas. While promising in modeling the geo-semantics, road network-based models overlooked the service-semantic goals (e.g., workload equality) in LBS service. In this paper, we point out that the AOI segmentation problem can be naturally formulated as a Markov Decision Process (MDP), which gradually chooses a nearby AOI for each grid in the current AOI's border. Based on the MDP, we present the first attempt to generalize Deep Reinforcement Learning (DRL) for AOI segmentation, leading to a novel DRL-based framework called DRL4AOI. The DRL4AOI framework introduces different service-semantic goals in a flexible way by treating them as rewards that guide the AOI generation. To evaluate the effectiveness of DRL4AOI, we develop and release an AOI segmentation system. We also present a representative implementation of DRL4AOI - TrajRL4AOI - for AOI segmentation in the logistics service. It introduces a Double Deep Q-learning Network (DDQN) to gradually optimize the AOI generation for two specific semantic goals: i) trajectory modularity, i.e., maximize tightness of the trajectory connections within an AOI and the sparsity of connections between AOIs, ii) matchness with the road network, i.e., maximizing the matchness between AOIs and the road network. Quantitative and qualitative experiments conducted on synthetic and real-world data demonstrate the effectiveness and superiority of our method. The code and system is publicly available at https://github.com/Kogler7/AoiOpt.
Uncertainty-aware Human Mobility Modeling and Anomaly Detection
Wen, Haomin, Cao, Shurui, Akoglu, Leman
Given the GPS coordinates of a large collection of human agents over time, how can we model their mobility behavior toward effective anomaly detection (e.g. for bad-actor or malicious behavior detection) without any labeled data? Human mobility and trajectory modeling have been studied extensively with varying capacity to handle complex input, and performance-efficiency trade-offs. With the arrival of more expressive models in machine learning, we attempt to model GPS data as a sequence of stay-point events, each with a set of characterizing spatiotemporal features, and leverage modern sequence models such as Transformers for un/self-supervised training and inference. Notably, driven by the inherent stochasticity of certain individuals' behavior, we equip our model with aleatoric/data uncertainty estimation. In addition, to handle data sparsity of a large variety of behaviors, we incorporate epistemic/model uncertainty into our model. Together, aleatoric and epistemic uncertainty enable a robust loss and training dynamics, as well as uncertainty-aware decision making in anomaly scoring. Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model against both forecasting and anomaly detection baselines.
UniTE: A Survey and Unified Pipeline for Pre-training ST Trajectory Embeddings
Lin, Yan, Zhou, Zeyu, Liu, Yicheng, Lv, Haochen, Wen, Haomin, Li, Tianyi, Li, Yushuai, Jensen, Christian S., Guo, Shengnan, Lin, Youfang, Wan, Huaiyu
Spatio-temporal (ST) trajectories are sequences of timestamped locations, which enable a variety of analyses that in turn enable important real-world applications. It is common to map trajectories to vectors, called embeddings, before subsequent analyses. Thus, the qualities of embeddings are very important. Methods for pre-training embeddings, which leverage unlabeled trajectories for training universal embeddings, have shown promising applicability across different tasks, thus attracting considerable interest. However, research progress on this topic faces two key challenges: a lack of a comprehensive overview of existing methods, resulting in several related methods not being well-recognized, and the absence of a unified pipeline, complicating the development new methods and the analysis of methods. To overcome these obstacles and advance the field of pre-training of trajectory embeddings, we present UniTE, a survey and a unified pipeline for this domain. In doing so, we present a comprehensive list of existing methods for pre-training trajectory embeddings, which includes methods that either explicitly or implicitly employ pre-training techniques. Further, we present a unified and modular pipeline with publicly available underlying code, simplifying the process of constructing and evaluating methods for pre-training trajectory embeddings. Additionally, we contribute a selection of experimental results using the proposed pipeline on real-world datasets.
Foundation Models for Time Series Analysis: A Tutorial and Survey
Liang, Yuxuan, Wen, Haomin, Nie, Yuqi, Jiang, Yushan, Jin, Ming, Song, Dongjin, Pan, Shirui, Wen, Qingsong
Time series analysis stands as a focal point within the data mining community, serving as a cornerstone for extracting valuable insights crucial to a myriad of real-world applications. Recent advances in Foundation Models (FMs) have fundamentally reshaped the paradigm of model design for time series analysis, boosting various downstream tasks in practice. These innovative approaches often leverage pre-trained or fine-tuned FMs to harness generalized knowledge tailored for time series analysis. This survey aims to furnish a comprehensive and up-to-date overview of FMs for time series analysis. While prior surveys have predominantly focused on either application or pipeline aspects of FMs in time series analysis, they have often lacked an in-depth understanding of the underlying mechanisms that elucidate why and how FMs benefit time series analysis. To address this gap, our survey adopts a methodology-centric classification, delineating various pivotal elements of time-series FMs, including model architectures, pre-training techniques, adaptation methods, and data modalities. Overall, this survey serves to consolidate the latest advancements in FMs pertinent to time series analysis, accentuating their theoretical underpinnings, recent strides in development, and avenues for future exploration.
Deep Learning for Cross-Domain Data Fusion in Urban Computing: Taxonomy, Advances, and Outlook
Zou, Xingchen, Yan, Yibo, Hao, Xixuan, Hu, Yuehong, Wen, Haomin, Liu, Erdong, Zhang, Junbo, Li, Yong, Li, Tianrui, Zheng, Yu, Liang, Yuxuan
As cities continue to burgeon, Urban Computing emerges as a pivotal discipline for sustainable development by harnessing the power of cross-domain data fusion from diverse sources (e.g., geographical, traffic, social media, and environmental data) and modalities (e.g., spatio-temporal, visual, and textual modalities). Recently, we are witnessing a rising trend that utilizes various deep-learning methods to facilitate cross-domain data fusion in smart cities. To this end, we propose the first survey that systematically reviews the latest advancements in deep learning-based data fusion methods tailored for urban computing. Specifically, we first delve into data perspective to comprehend the role of each modality and data source. Secondly, we classify the methodology into four primary categories: feature-based, alignment-based, contrast-based, and generation-based fusion methods. Thirdly, we further categorize multi-modal urban applications into seven types: urban planning, transportation, economy, public safety, society, environment, and energy. Compared with previous surveys, we focus more on the synergy of deep learning methods with urban computing applications. Furthermore, we shed light on the interplay between Large Language Models (LLMs) and urban computing, postulating future research directions that could revolutionize the field. We firmly believe that the taxonomy, progress, and prospects delineated in our survey stand poised to significantly enrich the research community. The summary of the comprehensive and up-to-date paper list can be found at https://github.com/yoshall/Awesome-Multimodal-Urban-Computing.
A Survey on Diffusion Models for Time Series and Spatio-Temporal Data
Yang, Yiyuan, Jin, Ming, Wen, Haomin, Zhang, Chaoli, Liang, Yuxuan, Ma, Lintao, Wang, Yi, Liu, Chenghao, Yang, Bin, Xu, Zenglin, Bian, Jiang, Pan, Shirui, Wen, Qingsong
The study of time series is crucial for understanding trends and anomalies over time, enabling predictive insights across various sectors. Spatio-temporal data, on the other hand, is vital for analyzing phenomena in both space and time, providing a dynamic perspective on complex system interactions. Recently, diffusion models have seen widespread application in time series and spatio-temporal data mining. Not only do they enhance the generative and inferential capabilities for sequential and temporal data, but they also extend to other downstream tasks. In this survey, we comprehensively and thoroughly review the use of diffusion models in time series and spatio-temporal data, categorizing them by model category, task type, data modality, and practical application domain. In detail, we categorize diffusion models into unconditioned and conditioned types and discuss time series and spatio-temporal data separately. Unconditioned models, which operate unsupervised, are subdivided into probability-based and score-based models, serving predictive and generative tasks such as forecasting, anomaly detection, classification, and imputation. Conditioned models, on the other hand, utilize extra information to enhance performance and are similarly divided for both predictive and generative tasks. Our survey extensively covers their application in various fields, including healthcare, recommendation, climate, energy, audio, and transportation, providing a foundational understanding of how these models analyze and generate data. Through this structured overview, we aim to provide researchers and practitioners with a comprehensive understanding of diffusion models for time series and spatio-temporal data analysis, aiming to direct future innovations and applications by addressing traditional challenges and exploring innovative solutions within the diffusion model framework.
Learning Geospatial Region Embedding with Heterogeneous Graph
Zou, Xingchen, Huang, Jiani, Hao, Xixuan, Yang, Yuhao, Wen, Haomin, Yan, Yibo, Huang, Chao, Liang, Yuxuan
Learning effective geospatial embeddings is crucial for a series of geospatial applications such as city analytics and earth monitoring. However, learning comprehensive region representations presents two significant challenges: first, the deficiency of effective intra-region feature representation; and second, the difficulty of learning from intricate inter-region dependencies. In this paper, we present GeoHG, an effective heterogeneous graph structure for learning comprehensive region embeddings for various downstream tasks. Specifically, we tailor satellite image representation learning through geo-entity segmentation and point-of-interest (POI) integration for expressive intra-regional features. Furthermore, GeoHG unifies informative spatial interdependencies and socio-environmental attributes into a powerful heterogeneous graph to encourage explicit modeling of higher-order inter-regional relationships. The intra-regional features and inter-regional correlations are seamlessly integrated by a model-agnostic graph learning framework for diverse downstream tasks. Extensive experiments demonstrate the effectiveness of GeoHG in geo-prediction tasks compared to existing methods, even under extreme data scarcity (with just 5% of training data). With interpretable region representations, GeoHG exhibits strong generalization capabilities across regions. We will release code and data upon paper notification.