Goto

Collaborating Authors

 Wen, Hao


GUI-Xplore: Empowering Generalizable GUI Agents with One Exploration

arXiv.org Artificial Intelligence

GUI agents hold significant potential to enhance the experience and efficiency of human-device interaction. However, current methods face challenges in generalizing across applications (apps) and tasks, primarily due to two fundamental limitations in existing datasets. First, these datasets overlook developer-induced structural variations among apps, limiting the transferability of knowledge across diverse software environments. Second, many of them focus solely on navigation tasks, which restricts their capacity to represent comprehensive software architectures and complex user interactions. To address these challenges, we introduce GUI-Xplore, a dataset meticulously designed to enhance cross-application and cross-task generalization via an exploration-and-reasoning framework. GUI-Xplore integrates pre-recorded exploration videos providing contextual insights, alongside five hierarchically structured downstream tasks designed to comprehensively evaluate GUI agent capabilities. To fully exploit GUI-Xplore's unique features, we propose Xplore-Agent, a GUI agent framework that combines Action-aware GUI Modeling with Graph-Guided Environment Reasoning. Further experiments indicate that Xplore-Agent achieves a 10% improvement over existing methods in unfamiliar environments, yet there remains significant potential for further enhancement towards truly generalizable GUI agents.


Improving Skeleton-based Action Recognition with Interactive Object Information

arXiv.org Artificial Intelligence

Human skeleton information is important in skeleton-based action recognition, which provides a simple and efficient way to describe human pose. However, existing skeleton-based methods focus more on the skeleton, ignoring the objects interacting with humans, resulting in poor performance in recognizing actions that involve object interactions. We propose a new action recognition framework introducing object nodes to supplement absent interactive object information. We also propose Spatial Temporal Variable Graph Convolutional Networks (ST-VGCN) to effectively model the Variable Graph (VG) containing object nodes. Specifically, in order to validate the role of interactive object information, by leveraging a simple self-training approach, we establish a new dataset, JXGC 24, and an extended dataset, NTU RGB+D+Object 60, including more than 2 million additional object nodes. At the same time, we designe the Variable Graph construction method to accommodate a variable number of nodes for graph structure. Additionally, we are the first to explore the overfitting issue introduced by incorporating additional object information, and we propose a VG-based data augmentation method to address this issue, called Random Node Attack. Finally, regarding the network structure, we introduce two fusion modules, CAF and WNPool, along with a novel Node Balance Loss, to enhance the comprehensive performance by effectively fusing and balancing skeleton and object node information. Our method surpasses the previous state-of-the-art on multiple skeleton-based action recognition benchmarks. The accuracy of our method on NTU RGB+D 60 cross-subject split is 96.7\%, and on cross-view split, it is 99.2\%.


AutoDroid-V2: Boosting SLM-based GUI Agents via Code Generation

arXiv.org Artificial Intelligence

Large language models (LLMs) have brought exciting new advances to mobile UI agents, a long-standing research field that aims to complete arbitrary natural language tasks through mobile UI interactions. However, existing UI agents usually demand high reasoning capabilities of powerful large models that are difficult to be deployed locally on end-users' devices, which raises huge concerns about user privacy and centralized serving cost. One way to reduce the required model size is to customize a smaller domain-specific model with high-quality training data, e.g. large-scale human demonstrations of diverse types of apps and tasks, while such datasets are extremely difficult to obtain. Inspired by the remarkable coding abilities of recent small language models (SLMs), we propose to convert the UI task automation problem to a code generation problem, which can be effectively solved by an on-device SLM and efficiently executed with an on-device code interpreter. Unlike normal coding tasks that can be extensively pretrained with public datasets, generating UI automation code is challenging due to the diversity, complexity, and variability of target apps. Therefore, we adopt a document-centered approach that automatically builds fine-grained API documentation for each app and generates diverse task samples based on this documentation. By guiding the agent with the synthetic documents and task samples, it learns to generate precise and efficient scripts to complete unseen tasks. Based on detailed comparisons with state-of-the-art mobile UI agents, our approach effectively improves the mobile task automation with significantly higher success rates and lower latency/token consumption. Code will be open-sourced.


IDOL: Instant Photorealistic 3D Human Creation from a Single Image

arXiv.org Artificial Intelligence

Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks.


ChainStream: An LLM-based Framework for Unified Synthetic Sensing

arXiv.org Artificial Intelligence

Many applications demand context sensing to offer personalized and timely services. Yet, developing sensing programs can be challenging for developers and using them is privacy-concerning for end-users. In this paper, we propose to use natural language as the unified interface to process personal data and sense user context, which can effectively ease app development and make the data pipeline more transparent. Our work is inspired by large language models (LLMs) and other generative models, while directly applying them does not solve the problem - letting the model directly process the data cannot handle complex sensing requests and letting the model write the data processing program suffers error-prone code generation. We address the problem with 1) a unified data processing framework that makes context-sensing programs simpler and 2) a feedback-guided query optimizer that makes data query more informative. To evaluate the performance of natural language-based context sensing, we create a benchmark that contains 133 context sensing tasks. Extensive evaluation has shown that our approach is able to automatically solve the context-sensing tasks efficiently and precisely. The code is opensourced at https://github.com/MobileLLM/ChainStream.


Towards Underwater Camouflaged Object Tracking: An Experimental Evaluation of SAM and SAM 2

arXiv.org Artificial Intelligence

Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale training datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To address this issue, we take a step forward by proposing the first large-scale underwater camouflaged object tracking dataset, namely UW-COT. Based on the proposed dataset, this paper presents an experimental evaluation of several advanced visual object tracking methods and the latest advancements in image and video segmentation. Specifically, we compare the performance of the Segment Anything Model (SAM) and its updated version, SAM 2, in challenging underwater environments. Our findings highlight the improvements in SAM 2 over SAM, demonstrating its enhanced capability to handle the complexities of underwater camouflaged objects. Compared to current advanced visual object tracking methods, the latest video segmentation foundation model SAM 2 also exhibits significant advantages, providing valuable insights into the development of more effective tracking technologies for underwater scenarios.


Novel clustered federated learning based on local loss

arXiv.org Artificial Intelligence

This paper proposes LCFL, a novel clustering metric for evaluating clients' data distributions in federated learning. LCFL aligns with federated learning requirements, accurately assessing client-to-client variations in data distribution. It offers advantages over existing clustered federated learning methods, addressing privacy concerns, improving applicability to non-convex models, and providing more accurate classification results. LCFL does not require prior knowledge of clients' data distributions. We provide a rigorous mathematical analysis, demonstrating the correctness and feasibility of our framework. Numerical experiments with neural network instances highlight the superior performance of LCFL over baselines on several clustered federated learning benchmarks.


Awesome Multi-modal Object Tracking

arXiv.org Artificial Intelligence

Multi-modal object tracking (MMOT) is an emerging field that combines data from various modalities, \eg vision (RGB), depth, thermal infrared, event, language and audio, to estimate the state of an arbitrary object in a video sequence. It is of great significance for many applications such as autonomous driving and intelligent surveillance. In recent years, MMOT has received more and more attention. However, existing MMOT algorithms mainly focus on two modalities (\eg RGB+depth, RGB+thermal infrared, and RGB+language). To leverage more modalities, some recent efforts have been made to learn a unified visual object tracking model for any modality. Additionally, some large-scale multi-modal tracking benchmarks have been established by simultaneously providing more than two modalities, such as vision-language-audio (\eg WebUAV-3M) and vision-depth-language (\eg UniMod1K). To track the latest progress in MMOT, we conduct a comprehensive investigation in this report. Specifically, we first divide existing MMOT tasks into five main categories, \ie RGBL tracking, RGBE tracking, RGBD tracking, RGBT tracking, and miscellaneous (RGB+X), where X can be any modality, such as language, depth, and event. Then, we analyze and summarize each MMOT task, focusing on widely used datasets and mainstream tracking algorithms based on their technical paradigms (\eg self-supervised learning, prompt learning, knowledge distillation, generative models, and state space models). Finally, we maintain a continuously updated paper list for MMOT at https://github.com/983632847/Awesome-Multimodal-Object-Tracking.


WebUOT-1M: Advancing Deep Underwater Object Tracking with A Million-Scale Benchmark

arXiv.org Artificial Intelligence

Underwater object tracking (UOT) is a foundational task for identifying and tracing submerged entities in underwater video sequences. However, current UOT datasets suffer from limitations in scale, diversity of target categories and scenarios covered, hindering the training and evaluation of modern tracking algorithms. To bridge this gap, we take the first step and introduce WebUOT-1M, \ie, the largest public UOT benchmark to date, sourced from complex and realistic underwater environments. It comprises 1.1 million frames across 1,500 video clips filtered from 408 target categories, largely surpassing previous UOT datasets, \eg, UVOT400. Through meticulous manual annotation and verification, we provide high-quality bounding boxes for underwater targets. Additionally, WebUOT-1M includes language prompts for video sequences, expanding its application areas, \eg, underwater vision-language tracking. Most existing trackers are tailored for open-air environments, leading to performance degradation when applied to UOT due to domain gaps. Retraining and fine-tuning these trackers are challenging due to sample imbalances and limited real-world underwater datasets. To tackle these challenges, we propose a novel omni-knowledge distillation framework based on WebUOT-1M, incorporating various strategies to guide the learning of the student Transformer. To the best of our knowledge, this framework is the first to effectively transfer open-air domain knowledge to the UOT model through knowledge distillation, as demonstrated by results on both existing UOT datasets and the newly proposed WebUOT-1M. Furthermore, we comprehensively evaluate WebUOT-1M using 30 deep trackers, showcasing its value as a benchmark for UOT research by presenting new challenges and opportunities for future studies. The complete dataset, codes and tracking results, will be made publicly available.


Understanding Multimodal Deep Neural Networks: A Concept Selection View

arXiv.org Artificial Intelligence

The multimodal deep neural networks, represented by CLIP, have generated rich downstream applications owing to their excellent performance, thus making understanding the decision-making process of CLIP an essential research topic. Due to the complex structure and the massive pre-training data, it is often regarded as a black-box model that is too difficult to understand and interpret. Concept-based models map the black-box visual representations extracted by deep neural networks onto a set of human-understandable concepts and use the concepts to make predictions, enhancing the transparency of the decision-making process. However, these methods involve the datasets labeled with fine-grained attributes by expert knowledge, which incur high costs and introduce excessive human prior knowledge and bias. In this paper, we observe the long-tail distribution of concepts, based on which we propose a two-stage Concept Selection Model (CSM) to mine core concepts without introducing any human priors. The concept greedy rough selection algorithm is applied to extract head concepts, and then the concept mask fine selection method performs the extraction of core concepts. Experiments show that our approach achieves comparable performance to end-to-end black-box models, and human evaluation demonstrates that the concepts discovered by our method are interpretable and comprehensible for humans.