Not enough data to create a plot.
Try a different view from the menu above.
Weller, Adrian
Modulating Language Model Experiences through Frictions
Collins, Katherine M., Chen, Valerie, Sucholutsky, Ilia, Kirk, Hannah Rose, Sadek, Malak, Sargeant, Holli, Talwalkar, Ameet, Weller, Adrian, Bhatt, Umang
Language models are transforming the ways that their users engage with the world. Despite impressive capabilities, over-consumption of language model outputs risks propagating unchecked errors in the short-term and damaging human capabilities for critical thinking in the long-term, particularly in knowledge-based tasks. How can we develop scaffolding around language models to curate more appropriate use? We propose selective frictions for language model experiences, inspired by behavioral science interventions, to dampen misuse. Frictions involve small modifications to a user's experience, e.g., the addition of a button impeding model access and reminding a user of their expertise relative to the model. Through a user study with real humans, we observe shifts in user behavior from the imposition of a friction over LLMs in the context of a multi-topic question-answering task as a representative task that people may use LLMs for, e.g., in education and information retrieval. We find that frictions modulate over-reliance by driving down users' click rates while minimally affecting accuracy for those topics. Yet, frictions may have unintended effects. We find marked differences in users' click behaviors even on topics where frictions were not provisioned. Our contributions motivate further study of human-AI behavioral interaction to inform more effective and appropriate LLM use.
In-Context In-Context Learning with Transformer Neural Processes
Ashman, Matthew, Diaconu, Cristiana, Weller, Adrian, Turner, Richard E.
Neural processes (NPs) are a powerful family of meta-learning models that seek to approximate the posterior predictive map of the ground-truth stochastic process from which each dataset in a meta-dataset is sampled. There are many cases in which practitioners, besides having access to the dataset of interest, may also have access to other datasets that share similarities with it. In this case, integrating these datasets into the NP can improve predictions. We equip NPs with this functionality and describe this paradigm as in-context in-context learning. Standard NP architectures, such as the convolutional conditional NP (ConvCNP) or the family of transformer neural processes (TNPs), are not capable of in-context in-context learning, as they are only able to condition on a single dataset. We address this shortcoming by developing the in-context in-context learning pseudo-token TNP (ICICL-TNP). The ICICL-TNP builds on the family of PT-TNPs, which utilise pseudo-token-based transformer architectures to sidestep the quadratic computational complexity associated with regular transformer architectures. Importantly, the ICICL-TNP is capable of conditioning on both sets of datapoints and sets of datasets, enabling it to perform in-context in-context learning. We demonstrate the importance of in-context in-context learning and the effectiveness of the ICICL-TNP in a number of experiments.
Approximately Equivariant Neural Processes
Ashman, Matthew, Diaconu, Cristiana, Weller, Adrian, Bruinsma, Wessel, Turner, Richard E.
Equivariant deep learning architectures exploit symmetries in learning problems to improve the sample efficiency of neural-network-based models and their ability to generalise. However, when modelling real-world data, learning problems are often not exactly equivariant, but only approximately. For example, when estimating the global temperature field from weather station observations, local topographical features like mountains break translation equivariance. In these scenarios, it is desirable to construct architectures that can flexibly depart from exact equivariance in a data-driven way. In this paper, we develop a general approach to achieving this using existing equivariant architectures. Our approach is agnostic to both the choice of symmetry group and model architecture, making it widely applicable. We consider the use of approximately equivariant architectures in neural processes (NPs), a popular family of meta-learning models. We demonstrate the effectiveness of our approach on a number of synthetic and real-world regression experiments, demonstrating that approximately equivariant NP models can outperform both their non-equivariant and strictly equivariant counterparts.
Certificates of Differential Privacy and Unlearning for Gradient-Based Training
Wicker, Matthew, Sosnin, Philip, Janik, Adrianna, Mรผller, Mark N., Weller, Adrian, Tsay, Calvin
Proper data stewardship requires that model owners protect the privacy of individuals' data used during training. Whether through anonymization with differential privacy or the use of unlearning in non-anonymized settings, the gold-standard techniques for providing privacy guarantees can come with significant performance penalties or be too weak to provide practical assurances. In part, this is due to the fact that the guarantee provided by differential privacy represents the worst-case privacy leakage for any individual, while the true privacy leakage of releasing the prediction for a given individual might be substantially smaller or even, as we show, non-existent. This work provides a novel framework based on convex relaxations and bounds propagation that can compute formal guarantees (certificates) that releasing specific predictions satisfies $\epsilon=0$ privacy guarantees or do not depend on data that is subject to an unlearning request. Our framework offers a new verification-centric approach to privacy and unlearning guarantees, that can be used to further engender user trust with tighter privacy guarantees, provide formal proofs of robustness to certain membership inference attacks, identify potentially vulnerable records, and enhance current unlearning approaches. We validate the effectiveness of our approach on tasks from financial services, medical imaging, and natural language processing.
Large Language Models Must Be Taught to Know What They Don't Know
Kapoor, Sanyam, Gruver, Nate, Roberts, Manley, Collins, Katherine, Pal, Arka, Bhatt, Umang, Weller, Adrian, Dooley, Samuel, Goldblum, Micah, Wilson, Andrew Gordon
When using large language models (LLMs) in high-stakes applications, we need to know when we can trust their predictions. Some works argue that prompting high-performance LLMs is sufficient to produce calibrated uncertainties, while others introduce sampling methods that can be prohibitively expensive. In this work, we first argue that prompting on its own is insufficient to achieve good calibration and then show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead. We show that a thousand graded examples are sufficient to outperform baseline methods and that training through the features of a model is necessary for good performance and tractable for large open-source models when using LoRA. We also investigate the mechanisms that enable reliable LLM uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators, applicable not just to their own uncertainties but also the uncertainty of other models. Lastly, we show that uncertainty estimates inform human use of LLMs in human-AI collaborative settings through a user study.
Representational Alignment Supports Effective Machine Teaching
Sucholutsky, Ilia, Collins, Katherine M., Malaviya, Maya, Jacoby, Nori, Liu, Weiyang, Sumers, Theodore R., Korakakis, Michalis, Bhatt, Umang, Ho, Mark, Tenenbaum, Joshua B., Love, Brad, Pardos, Zachary A., Weller, Adrian, Griffiths, Thomas L.
A good teacher should not only be knowledgeable; but should be able to communicate in a way that the student understands -- to share the student's representation of the world. In this work, we integrate insights from machine teaching and pragmatic communication with the burgeoning literature on representational alignment to characterize a utility curve defining a relationship between representational alignment and teacher capability for promoting student learning. To explore the characteristics of this utility curve, we design a supervised learning environment that disentangles representational alignment from teacher accuracy. We conduct extensive computational experiments with machines teaching machines, complemented by a series of experiments in which machines teach humans. Drawing on our findings that improved representational alignment with a student improves student learning outcomes (i.e., task accuracy), we design a classroom matching procedure that assigns students to teachers based on the utility curve. If we are to design effective machine teachers, it is not enough to build teachers that are accurate -- we want teachers that can align, representationally, to their students too.
Variance-Reducing Couplings for Random Features: Perspectives from Optimal Transport
Reid, Isaac, Markou, Stratis, Choromanski, Krzysztof, Turner, Richard E., Weller, Adrian
Random features (RFs) are a popular technique to scale up kernel methods in machine learning, replacing exact kernel evaluations with stochastic Monte Carlo estimates. They underpin models as diverse as efficient transformers (by approximating attention) to sparse spectrum Gaussian processes (by approximating the covariance function). Efficiency can be further improved by speeding up the convergence of these estimates: a variance reduction problem. We tackle this through the unifying framework of optimal transport, using theoretical insights and numerical algorithms to develop novel, high-performing RF couplings for kernels defined on Euclidean and discrete input spaces. They enjoy concrete theoretical performance guarantees and sometimes provide strong empirical downstream gains, including for scalable approximate inference on graphs. We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
Estimation of Concept Explanations Should be Uncertainty Aware
Piratla, Vihari, Heo, Juyeon, Singh, Sukriti, Weller, Adrian
Model explanations are very valuable for interpreting and debugging prediction models. We study a specific kind of global explanations called Concept Explanations, where the goal is to interpret a model using human-understandable concepts. Recent advances in multi-modal learning rekindled interest in concept explanations and led to several label-efficient proposals for estimation. However, existing estimation methods are unstable to the choice of concepts or dataset that is used for computing explanations. We observe that instability in explanations is due to high variance in point estimation of importance scores. We propose an uncertainty aware Bayesian estimation method, which readily improved reliability of the concept explanations. We demonstrate with theoretical analysis and empirical evaluation that explanations computed by our method are more reliable while also being label-efficient and faithful.
Use Perturbations when Learning from Explanations
Heo, Juyeon, Piratla, Vihari, Wicker, Matthew, Weller, Adrian
Machine learning from explanations (MLX) is an approach to learning that uses human-provided explanations of relevant or irrelevant features for each input to ensure that model predictions are right for the right reasons. Existing MLX approaches rely on local model interpretation methods and require strong model smoothing to align model and human explanations, leading to sub-optimal performance. We recast MLX as a robustness problem, where human explanations specify a lower dimensional manifold from which perturbations can be drawn, and show both theoretically and empirically how this approach alleviates the need for strong model smoothing. We consider various approaches to achieving robustness, leading to improved performance over prior MLX methods. Finally, we show how to combine robustness with an earlier MLX method, yielding state-of-the-art results on both synthetic and real-world benchmarks.
Certification of Distributional Individual Fairness
Wicker, Matthew, Piratia, Vihari, Weller, Adrian
Providing formal guarantees of algorithmic fairness is of paramount importance to socially responsible deployment of machine learning algorithms. In this work, we study formal guarantees, i.e., certificates, for individual fairness (IF) of neural networks. We start by introducing a novel convex approximation of IF constraints that exponentially decreases the computational cost of providing formal guarantees of local individual fairness. We highlight that prior methods are constrained by their focus on global IF certification and can therefore only scale to models with a few dozen hidden neurons, thus limiting their practical impact. We propose to certify distributional individual fairness which ensures that for a given empirical distribution and all distributions within a $\gamma$-Wasserstein ball, the neural network has guaranteed individually fair predictions. Leveraging developments in quasi-convex optimization, we provide novel and efficient certified bounds on distributional individual fairness and show that our method allows us to certify and regularize neural networks that are several orders of magnitude larger than those considered by prior works. Moreover, we study real-world distribution shifts and find our bounds to be a scalable, practical, and sound source of IF guarantees.