Wei, Ting-Ruen
A Survey on Feedback-based Multi-step Reasoning for Large Language Models on Mathematics
Wei, Ting-Ruen, Liu, Haowei, Wu, Xuyang, Fang, Yi
Recent progress in large language models (LLM) found chain-of-thought prompting strategies to improve the reasoning ability of LLMs by encouraging problem solving through multiple steps. Therefore, subsequent research aimed to integrate the multi-step reasoning process into the LLM itself through process rewards as feedback and achieved improvements over prompting strategies. Due to the cost of step-level annotation, some turn to outcome rewards as feedback. Aside from these training-based approaches, training-free techniques leverage frozen LLMs or external tools for feedback at each step to enhance the reasoning process. With the abundance of work in mathematics due to its logical nature, we present a survey of strategies utilizing feedback at the step and outcome levels to enhance multi-step math reasoning for LLMs. As multi-step reasoning emerges a crucial component in scaling LLMs, we hope to establish its foundation for easier understanding and empower further research.
Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning
Wei, Ting-Ruen, Hell, Michele, Le, Dang Bich Thuy, Vierra, Aren, Pang, Ran, Patel, Mahesh, Kang, Young, Yan, Yuling
This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging. Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations. This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset. The dataset, twice the size of the public one, exhibits considerable variability in image acquisition perspectives and demographic representation, posing a domain-shift challenge. Unlike typical domain adversarial training, we employ downstream classification outcomes as a benchmark to guide the updating of pseudo-masks in subsequent iterations. We found the classification precision to be highly correlated with the completeness of the generated ROIs, which promotes the explainability of the deep learning classification model. Preliminary findings demonstrate the efficacy and reliability of this approach in streamlining the ROI annotation process, thereby enhancing the classification and localization of breast lesions for more precise and interpretable diagnoses.