Wei, Cong
A Survey on Data-Centric AI: Tabular Learning from Reinforcement Learning and Generative AI Perspective
Ying, Wangyang, Wei, Cong, Gong, Nanxu, Wang, Xinyuan, Bai, Haoyue, Malarkkan, Arun Vignesh, Dong, Sixun, Wang, Dongjie, Zhang, Denghui, Fu, Yanjie
Tabular data is one of the most widely used data formats across various domains such as bioinformatics, healthcare, and marketing. As artificial intelligence moves towards a data-centric perspective, improving data quality is essential for enhancing model performance in tabular data-driven applications. This survey focuses on data-driven tabular data optimization, specifically exploring reinforcement learning (RL) and generative approaches for feature selection and feature generation as fundamental techniques for refining data spaces. Feature selection aims to identify and retain the most informative attributes, while feature generation constructs new features to better capture complex data patterns. We systematically review existing generative methods for tabular data engineering, analyzing their latest advancements, real-world applications, and respective strengths and limitations. This survey emphasizes how RL-based and generative techniques contribute to the automation and intelligence of feature engineering. Finally, we summarize the existing challenges and discuss future research directions, aiming to provide insights that drive continued innovation in this field.
OmniEdit: Building Image Editing Generalist Models Through Specialist Supervision
Wei, Cong, Xiong, Zheyang, Ren, Weiming, Du, Xinrun, Zhang, Ge, Chen, Wenhu
Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at \url{https://tiger-ai-lab.github.io/OmniEdit/}
AnyV2V: A Tuning-Free Framework For Any Video-to-Video Editing Tasks
Ku, Max, Wei, Cong, Ren, Weiming, Yang, Harry, Chen, Wenhu
In the dynamic field of digital content creation using generative models, state-of-the-art video editing models still do not offer the level of quality and control that users desire. Previous works on video editing either extended from image-based generative models in a zero-shot manner or necessitated extensive fine-tuning, which can hinder the production of fluid video edits. Furthermore, these methods frequently rely on textual input as the editing guidance, leading to ambiguities and limiting the types of edits they can perform. Recognizing these challenges, we introduce AnyV2V, a novel tuning-free paradigm designed to simplify video editing into two primary steps: (1) employing an off-the-shelf image editing model to modify the first frame, (2) utilizing an existing image-to-video generation model to generate the edited video through temporal feature injection. AnyV2V can leverage any existing image editing tools to support an extensive array of video editing tasks, including prompt-based editing, reference-based style transfer, subject-driven editing, and identity manipulation, which were unattainable by previous methods. AnyV2V can also support any video length. Our evaluation indicates that AnyV2V significantly outperforms other baseline methods in automatic and human evaluations by significant margin, maintaining visual consistency with the source video while achieving high-quality edits across all the editing tasks.
MANTIS: Interleaved Multi-Image Instruction Tuning
Jiang, Dongfu, He, Xuan, Zeng, Huaye, Wei, Cong, Ku, Max, Liu, Qian, Chen, Wenhu
Large multimodal models (LMMs) have shown great results in single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing LMMs like OpenFlamingo, Emu2, Idefics gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from the web, which is neither efficient nor effective. In this paper, we aim to build strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K multi-image instruction data to train a family of models Mantis. The instruction tuning empowers Mantis with different multi-image skills like co-reference, comparison, reasoning, and temporal understanding. We evaluate Mantis on five multi-image benchmarks and seven single-image benchmarks. Mantis-SigLIP can achieve SoTA results on all the multi-image benchmarks and beat the strongest multi-image baseline, Idefics2-8B by an average of 11 absolute points. Notably, Idefics2-8B was pre-trained on 140M interleaved multi-image data, which is 200x larger than Mantis-Instruct. We observe that Mantis performs equivalently well on the held-in and held-out benchmarks, which shows its generalization ability. Notably, we found that Mantis can even match the performance of GPT-4V on multi-image benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis also maintains a strong single-image performance on par with CogVLM and Emu2. Our results show that multi-image abilities are not necessarily gained through massive pre-training, instead, it can be gained by the low-cost instruction tuning. Our work provides new perspectives on how to improve LMMs' multi-image abilities.
VIEScore: Towards Explainable Metrics for Conditional Image Synthesis Evaluation
Ku, Max, Jiang, Dongfu, Wei, Cong, Yue, Xiang, Chen, Wenhu
In the rapidly advancing field of conditional image generation research, challenges such as limited explainability lie in effectively evaluating the performance and capabilities of various models. This paper introduces VIESCORE, a Visual Instruction-guided Explainable metric for evaluating any conditional image generation tasks. VIESCORE leverages general knowledge from Multimodal Large Language Models (MLLMs) as the backbone and does not require training or fine-tuning. We evaluate VIESCORE on seven prominent tasks in conditional image tasks and found: (1) VIESCORE (GPT4-v) achieves a high Spearman correlation of 0.3 with human evaluations, while the human-to-human correlation is 0.45. (2) VIESCORE (with open-source MLLM) is significantly weaker than GPT-4v in evaluating synthetic images. (3) VIESCORE achieves a correlation on par with human ratings in the generation tasks but struggles in editing tasks. With these results, we believe VIESCORE shows its great potential to replace human judges in evaluating image synthesis tasks.
MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI
Yue, Xiang, Ni, Yuansheng, Zhang, Kai, Zheng, Tianyu, Liu, Ruoqi, Zhang, Ge, Stevens, Samuel, Jiang, Dongfu, Ren, Weiming, Sun, Yuxuan, Wei, Cong, Yu, Botao, Yuan, Ruibin, Sun, Renliang, Yin, Ming, Zheng, Boyuan, Yang, Zhenzhu, Liu, Yibo, Huang, Wenhao, Sun, Huan, Su, Yu, Chen, Wenhu
We introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. Unlike existing benchmarks, MMMU focuses on advanced perception and reasoning with domain-specific knowledge, challenging models to perform tasks akin to those faced by experts. The evaluation of 14 open-source LMMs as well as the proprietary GPT-4V(ision) and Gemini highlights the substantial challenges posed by MMMU. Even the advanced GPT-4V and Gemini Ultra only achieve accuracies of 56% and 59% respectively, indicating significant room for improvement. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence.
UniIR: Training and Benchmarking Universal Multimodal Information Retrievers
Wei, Cong, Chen, Yang, Chen, Haonan, Hu, Hexiang, Zhang, Ge, Fu, Jie, Ritter, Alan, Chen, Wenhu
Existing information retrieval (IR) models often assume a homogeneous format, limiting their applicability to diverse user needs, such as searching for images with text descriptions, searching for a news article with a headline image, or finding a similar photo with a query image. To approach such different information-seeking demands, we introduce UniIR, a unified instruction-guided multimodal retriever capable of handling eight distinct retrieval tasks across modalities. UniIR, a single retrieval system jointly trained on ten diverse multimodal-IR datasets, interprets user instructions to execute various retrieval tasks, demonstrating robust performance across existing datasets and zero-shot generalization to new tasks. Our experiments highlight that multi-task training and instruction tuning are keys to UniIR's generalization ability. Additionally, we construct the M-BEIR, a multimodal retrieval benchmark with comprehensive results, to standardize the evaluation of universal multimodal information retrieval.
Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers
Wei, Cong, Duke, Brendan, Jiang, Ruowei, Aarabi, Parham, Taylor, Graham W., Shkurti, Florian
Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.