Wei, Colin
GPT-4o System Card
OpenAI, null, :, null, Hurst, Aaron, Lerer, Adam, Goucher, Adam P., Perelman, Adam, Ramesh, Aditya, Clark, Aidan, Ostrow, AJ, Welihinda, Akila, Hayes, Alan, Radford, Alec, Mądry, Aleksander, Baker-Whitcomb, Alex, Beutel, Alex, Borzunov, Alex, Carney, Alex, Chow, Alex, Kirillov, Alex, Nichol, Alex, Paino, Alex, Renzin, Alex, Passos, Alex Tachard, Kirillov, Alexander, Christakis, Alexi, Conneau, Alexis, Kamali, Ali, Jabri, Allan, Moyer, Allison, Tam, Allison, Crookes, Amadou, Tootoochian, Amin, Tootoonchian, Amin, Kumar, Ananya, Vallone, Andrea, Karpathy, Andrej, Braunstein, Andrew, Cann, Andrew, Codispoti, Andrew, Galu, Andrew, Kondrich, Andrew, Tulloch, Andrew, Mishchenko, Andrey, Baek, Angela, Jiang, Angela, Pelisse, Antoine, Woodford, Antonia, Gosalia, Anuj, Dhar, Arka, Pantuliano, Ashley, Nayak, Avi, Oliver, Avital, Zoph, Barret, Ghorbani, Behrooz, Leimberger, Ben, Rossen, Ben, Sokolowsky, Ben, Wang, Ben, Zweig, Benjamin, Hoover, Beth, Samic, Blake, McGrew, Bob, Spero, Bobby, Giertler, Bogo, Cheng, Bowen, Lightcap, Brad, Walkin, Brandon, Quinn, Brendan, Guarraci, Brian, Hsu, Brian, Kellogg, Bright, Eastman, Brydon, Lugaresi, Camillo, Wainwright, Carroll, Bassin, Cary, Hudson, Cary, Chu, Casey, Nelson, Chad, Li, Chak, Shern, Chan Jun, Conger, Channing, Barette, Charlotte, Voss, Chelsea, Ding, Chen, Lu, Cheng, Zhang, Chong, Beaumont, Chris, Hallacy, Chris, Koch, Chris, Gibson, Christian, Kim, Christina, Choi, Christine, McLeavey, Christine, Hesse, Christopher, Fischer, Claudia, Winter, Clemens, Czarnecki, Coley, Jarvis, Colin, Wei, Colin, Koumouzelis, Constantin, Sherburn, Dane, Kappler, Daniel, Levin, Daniel, Levy, Daniel, Carr, David, Farhi, David, Mely, David, Robinson, David, Sasaki, David, Jin, Denny, Valladares, Dev, Tsipras, Dimitris, Li, Doug, Nguyen, Duc Phong, Findlay, Duncan, Oiwoh, Edede, Wong, Edmund, Asdar, Ehsan, Proehl, Elizabeth, Yang, Elizabeth, Antonow, Eric, Kramer, Eric, Peterson, Eric, Sigler, Eric, Wallace, Eric, Brevdo, Eugene, Mays, Evan, Khorasani, Farzad, Such, Felipe Petroski, Raso, Filippo, Zhang, Francis, von Lohmann, Fred, Sulit, Freddie, Goh, Gabriel, Oden, Gene, Salmon, Geoff, Starace, Giulio, Brockman, Greg, Salman, Hadi, Bao, Haiming, Hu, Haitang, Wong, Hannah, Wang, Haoyu, Schmidt, Heather, Whitney, Heather, Jun, Heewoo, Kirchner, Hendrik, Pinto, Henrique Ponde de Oliveira, Ren, Hongyu, Chang, Huiwen, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, O'Connell, Ian, Osband, Ian, Silber, Ian, Sohl, Ian, Okuyucu, Ibrahim, Lan, Ikai, Kostrikov, Ilya, Sutskever, Ilya, Kanitscheider, Ingmar, Gulrajani, Ishaan, Coxon, Jacob, Menick, Jacob, Pachocki, Jakub, Aung, James, Betker, James, Crooks, James, Lennon, James, Kiros, Jamie, Leike, Jan, Park, Jane, Kwon, Jason, Phang, Jason, Teplitz, Jason, Wei, Jason, Wolfe, Jason, Chen, Jay, Harris, Jeff, Varavva, Jenia, Lee, Jessica Gan, Shieh, Jessica, Lin, Ji, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Jang, Joanne, Candela, Joaquin Quinonero, Beutler, Joe, Landers, Joe, Parish, Joel, Heidecke, Johannes, Schulman, John, Lachman, Jonathan, McKay, Jonathan, Uesato, Jonathan, Ward, Jonathan, Kim, Jong Wook, Huizinga, Joost, Sitkin, Jordan, Kraaijeveld, Jos, Gross, Josh, Kaplan, Josh, Snyder, Josh, Achiam, Joshua, Jiao, Joy, Lee, Joyce, Zhuang, Juntang, Harriman, Justyn, Fricke, Kai, Hayashi, Kai, Singhal, Karan, Shi, Katy, Karthik, Kavin, Wood, Kayla, Rimbach, Kendra, Hsu, Kenny, Nguyen, Kenny, Gu-Lemberg, Keren, Button, Kevin, Liu, Kevin, Howe, Kiel, Muthukumar, Krithika, Luther, Kyle, Ahmad, Lama, Kai, Larry, Itow, Lauren, Workman, Lauren, Pathak, Leher, Chen, Leo, Jing, Li, Guy, Lia, Fedus, Liam, Zhou, Liang, Mamitsuka, Lien, Weng, Lilian, McCallum, Lindsay, Held, Lindsey, Ouyang, Long, Feuvrier, Louis, Zhang, Lu, Kondraciuk, Lukas, Kaiser, Lukasz, Hewitt, Luke, Metz, Luke, Doshi, Lyric, Aflak, Mada, Simens, Maddie, Boyd, Madelaine, Thompson, Madeleine, Dukhan, Marat, Chen, Mark, Gray, Mark, Hudnall, Mark, Zhang, Marvin, Aljubeh, Marwan, Litwin, Mateusz, Zeng, Matthew, Johnson, Max, Shetty, Maya, Gupta, Mayank, Shah, Meghan, Yatbaz, Mehmet, Yang, Meng Jia, Zhong, Mengchao, Glaese, Mia, Chen, Mianna, Janner, Michael, Lampe, Michael, Petrov, Michael, Wu, Michael, Wang, Michele, Fradin, Michelle, Pokrass, Michelle, Castro, Miguel, de Castro, Miguel Oom Temudo, Pavlov, Mikhail, Brundage, Miles, Wang, Miles, Khan, Minal, Murati, Mira, Bavarian, Mo, Lin, Molly, Yesildal, Murat, Soto, Nacho, Gimelshein, Natalia, Cone, Natalie, Staudacher, Natalie, Summers, Natalie, LaFontaine, Natan, Chowdhury, Neil, Ryder, Nick, Stathas, Nick, Turley, Nick, Tezak, Nik, Felix, Niko, Kudige, Nithanth, Keskar, Nitish, Deutsch, Noah, Bundick, Noel, Puckett, Nora, Nachum, Ofir, Okelola, Ola, Boiko, Oleg, Murk, Oleg, Jaffe, Oliver, Watkins, Olivia, Godement, Olivier, Campbell-Moore, Owen, Chao, Patrick, McMillan, Paul, Belov, Pavel, Su, Peng, Bak, Peter, Bakkum, Peter, Deng, Peter, Dolan, Peter, Hoeschele, Peter, Welinder, Peter, Tillet, Phil, Pronin, Philip, Tillet, Philippe, Dhariwal, Prafulla, Yuan, Qiming, Dias, Rachel, Lim, Rachel, Arora, Rahul, Troll, Rajan, Lin, Randall, Lopes, Rapha Gontijo, Puri, Raul, Miyara, Reah, Leike, Reimar, Gaubert, Renaud, Zamani, Reza, Wang, Ricky, Donnelly, Rob, Honsby, Rob, Smith, Rocky, Sahai, Rohan, Ramchandani, Rohit, Huet, Romain, Carmichael, Rory, Zellers, Rowan, Chen, Roy, Chen, Ruby, Nigmatullin, Ruslan, Cheu, Ryan, Jain, Saachi, Altman, Sam, Schoenholz, Sam, Toizer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Culver, Sara, Ethersmith, Scott, Gray, Scott, Grove, Sean, Metzger, Sean, Hermani, Shamez, Jain, Shantanu, Zhao, Shengjia, Wu, Sherwin, Jomoto, Shino, Wu, Shirong, Shuaiqi, null, Xia, null, Phene, Sonia, Papay, Spencer, Narayanan, Srinivas, Coffey, Steve, Lee, Steve, Hall, Stewart, Balaji, Suchir, Broda, Tal, Stramer, Tal, Xu, Tao, Gogineni, Tarun, Christianson, Taya, Sanders, Ted, Patwardhan, Tejal, Cunninghman, Thomas, Degry, Thomas, Dimson, Thomas, Raoux, Thomas, Shadwell, Thomas, Zheng, Tianhao, Underwood, Todd, Markov, Todor, Sherbakov, Toki, Rubin, Tom, Stasi, Tom, Kaftan, Tomer, Heywood, Tristan, Peterson, Troy, Walters, Tyce, Eloundou, Tyna, Qi, Valerie, Moeller, Veit, Monaco, Vinnie, Kuo, Vishal, Fomenko, Vlad, Chang, Wayne, Zheng, Weiyi, Zhou, Wenda, Manassra, Wesam, Sheu, Will, Zaremba, Wojciech, Patil, Yash, Qian, Yilei, Kim, Yongjik, Cheng, Youlong, Zhang, Yu, He, Yuchen, Zhang, Yuchen, Jin, Yujia, Dai, Yunxing, Malkov, Yury
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Max-Margin Works while Large Margin Fails: Generalization without Uniform Convergence
Glasgow, Margalit, Wei, Colin, Wootters, Mary, Ma, Tengyu
A major challenge in modern machine learning is theoretically understanding the generalization properties of overparameterized models. Many existing tools rely on uniform convergence (UC), a property that, when it holds, guarantees that the test loss will be close to the training loss, uniformly over a class of candidate models. Nagarajan and Kolter (2019) show that in certain simple linear and neural-network settings, any uniform convergence bound will be vacuous, leaving open the question of how to prove generalization in settings where UC fails. Our main contribution is proving novel generalization bounds in two such settings, one linear, and one non-linear. We study the linear classification setting of Nagarajan and Kolter, and a quadratic ground truth function learned via a two-layer neural network in the non-linear regime. We prove a new type of margin bound showing that above a certain signal-to-noise threshold, any near-max-margin classifier will achieve almost no test loss in these two settings. Our results show that near-max-margin is important: while any model that achieves at least a $(1 - \epsilon)$-fraction of the max-margin generalizes well, a classifier achieving half of the max-margin may fail terribly. Building on the impossibility results of Nagarajan and Kolter, under slightly stronger assumptions, we show that one-sided UC bounds and classical margin bounds will fail on near-max-margin classifiers. Our analysis provides insight on why memorization can coexist with generalization: we show that in this challenging regime where generalization occurs but UC fails, near-max-margin classifiers simultaneously contain some generalizable components and some overfitting components that memorize the data. The presence of the overfitting components is enough to preclude UC, but the near-extremal margin guarantees that sufficient generalizable components are present.
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
Wei, Colin, Chen, Yining, Ma, Tengyu
A common lens to theoretically study neural net architectures is to analyze the functions they can approximate. However, the constructions from approximation theory often have unrealistic aspects, for example, reliance on infinite precision to memorize target function values, which make these results potentially less meaningful. To address these issues, this work proposes a formal definition of statistically meaningful approximation which requires the approximating network to exhibit good statistical learnability. We present case studies on statistically meaningful approximation for two classes of functions: boolean circuits and Turing machines. We show that overparameterized feedforward neural nets can statistically meaningfully approximate boolean circuits with sample complexity depending only polynomially on the circuit size, not the size of the approximating network. In addition, we show that transformers can statistically meaningfully approximate Turing machines with computation time bounded by $T$, requiring sample complexity polynomial in the alphabet size, state space size, and $\log (T)$. Our analysis introduces new tools for generalization bounds that provide much tighter sample complexity guarantees than the typical VC-dimension or norm-based bounds, which may be of independent interest.
Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning
Wei, Colin, Xie, Sang Michael, Ma, Tengyu
Pretrained language models have achieved state-of-the-art performance when adapted to a downstream NLP task. However, theoretical analysis of these models is scarce and challenging since the pretraining and downstream tasks can be very different. We propose an analysis framework that links the pretraining and downstream tasks with an underlying latent variable generative model of text -- the downstream classifier must recover a function of the posterior distribution over the latent variables. We analyze head tuning (learning a classifier on top of the frozen pretrained model) and prompt tuning in this setting. The generative model in our analysis is either a Hidden Markov Model (HMM) or an HMM augmented with a latent memory component, motivated by long-term dependencies in natural language. We show that 1) under certain non-degeneracy conditions on the HMM, simple classification heads can solve the downstream task, 2) prompt tuning obtains downstream guarantees with weaker non-degeneracy conditions, and 3) our recovery guarantees for the memory-augmented HMM are stronger than for the vanilla HMM because task-relevant information is easier to recover from the long-term memory. Experiments on synthetically generated data from HMMs back our theoretical findings.
Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Wei, Colin, Shen, Kendrick, Chen, Yining, Ma, Tengyu
Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic "expansion" assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.
Self-training Avoids Using Spurious Features Under Domain Shift
Chen, Yining, Wei, Colin, Kumar, Ananya, Ma, Tengyu
In unsupervised domain adaptation, existing theory focuses on situations where the source and target domains are close. In practice, conditional entropy minimization and pseudo-labeling work even when the domain shifts are much larger than those analyzed by existing theory. We identify and analyze one particular setting where the domain shift can be large, but these algorithms provably work: certain spurious features correlate with the label in the source domain but are independent of the label in the target. Our analysis considers linear classification where the spurious features are Gaussian and the non-spurious features are a mixture of log-concave distributions. For this setting, we prove that entropy minimization on unlabeled target data will avoid using the spurious feature if initialized with a decently accurate source classifier, even though the objective is non-convex and contains multiple bad local minima using the spurious features. We verify our theory for spurious domain shift tasks on semi-synthetic Celeb-A and MNIST datasets. Our results suggest that practitioners collect and self-train on large, diverse datasets to reduce biases in classifiers even if labeling is impractical.
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
HaoChen, Jeff Z., Wei, Colin, Lee, Jason D., Ma, Tengyu
The noise in stochastic gradient descent (SGD) provides a crucial implicit regularization effect for training overparameterized models. Prior theoretical work largely focuses on spherical Gaussian noise, whereas empirical studies demonstrate the phenomenon that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise. This paper theoretically characterizes this phenomenon on a quadratically-parameterized model introduced by Vaskevicius et el. and Woodworth et el. We show that in an over-parameterized setting, SGD with label noise recovers the sparse ground-truth with an arbitrary initialization, whereas SGD with Gaussian noise or gradient descent overfits to dense solutions with large norms. Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not. Code for our project is publicly available.
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Wei, Colin, Ma, Tengyu
For linear classifiers, the relationship between (normalized) output margin and generalization is captured in a clear and simple bound -- a large output margin implies good generalization. Unfortunately, for deep models, this relationship is less clear: existing analyses of the output margin give complicated bounds which sometimes depend exponentially on depth. In this work, we propose to instead analyze a new notion of margin, which we call the "all-layer margin." Our analysis reveals that the all-layer margin has a clear and direct relationship with generalization for deep models. This enables the following concrete applications of the all-layer margin: 1) by analyzing the all-layer margin, we obtain tighter generalization bounds for neural nets which depend on Jacobian and hidden layer norms and remove the exponential dependency on depth 2) our neural net results easily translate to the adversarially robust setting, giving the first direct analysis of robust test error for deep networks, and 3) we present a theoretically inspired training algorithm for increasing the all-layer margin and demonstrate that our algorithm improves test performance over strong baselines in practice.
Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks
Li, Yuanzhi, Wei, Colin, Ma, Tengyu
It is a commonly accepted fact that a large initial learning rate is required to successfully train a deep network even though it slows down optimization of the train loss. Modern state-of-the-art architectures typically start with a large learning rate and anneal it at a point when the model's fit to the training data plateaus [25, 32, 17, 42]. Meanwhile, models trained using only small learning rates have been found to generalize poorly despite enjoying faster optimization of the training loss. A number of papers have proposed explanations for this phenomenon, such as sharpness of the local minima [22, 20, 24], the time it takes to move from initialization [18, 40], and the scale of SGD noise [38]. However, we still have a limited understanding of a surprising and striking part of the large learning rate phenomenon: from looking at the section of the accuracy curve before annealing, it would appear that a small learning rate model should outperform the large learning rate model in both training and test error. Concretely, in Figure 1, the model trained with small learning rate outperforms the large learning rate until epoch 60 when the learning rate is first annealed. Only after annealing does the large learning rate visibly outperform the small learning rate in terms of generalization. In this paper, we propose to theoretically explain this phenomenon via the concept of learning order of the model, i.e., the rates at which it learns different types of examples.
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Cao, Kaidi, Wei, Colin, Gaidon, Adrien, Arechiga, Nikos, Ma, Tengyu
Deep learning algorithms can fare poorly when the training dataset suffers from heavy class-imbalance but the testing criterion requires good generalization on less frequent classes. We design two novel methods to improve performance in such scenarios. First, we propose a theoretically-principled label-distribution-aware margin (LDAM) loss motivated by minimizing a margin-based generalization bound. This loss replaces the standard cross-entropy objective during training and can be applied with prior strategies for training with class-imbalance such as re-weighting or re-sampling. Second, we propose a simple, yet effective, training schedule that defers re-weighting until after the initial stage, allowing the model to learn an initial representation while avoiding some of the complications associated with re-weighting or re-sampling. We test our methods on several benchmark vision tasks including the real-world imbalanced dataset iNaturalist 2018. Our experiments show that either of these methods alone can already improve over existing techniques and their combination achieves even better performance gains.