Plotting

 Wang, Zixiang


ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration

arXiv.org Artificial Intelligence

We introduce ColaCare, a framework that enhances Electronic Health Record (EHR) modeling through multi-agent collaboration driven by Large Language Models (LLMs). Our approach seamlessly integrates domain-specific expert models with LLMs to bridge the gap between structured EHR data and text-based reasoning. Inspired by clinical consultations, ColaCare employs two types of agents: DoctorAgent and MetaAgent, which collaboratively analyze patient data. Expert models process and generate predictions from numerical EHR data, while LLM agents produce reasoning references and decision-making reports within the collaborative consultation framework. We additionally incorporate the Merck Manual of Diagnosis and Therapy (MSD) medical guideline within a retrieval-augmented generation (RAG) module for authoritative evidence support. Extensive experiments conducted on four distinct EHR datasets demonstrate ColaCare's superior performance in mortality prediction tasks, underscoring its potential to revolutionize clinical decision support systems and advance personalized precision medicine. The code, complete prompt templates, more case studies, etc. are publicly available at the anonymous link: https://colacare.netlify.app.


Research on Autonomous Robots Navigation based on Reinforcement Learning

arXiv.org Machine Learning

Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.


EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling

arXiv.org Artificial Intelligence

The integration of multimodal Electronic Health Records (EHR) data has notably advanced clinical predictive capabilities. However, current models that utilize clinical notes and multivariate time-series EHR data often lack the necessary medical context for precise clinical tasks. Previous methods using knowledge graphs (KGs) primarily focus on structured knowledge extraction. To address this, we propose EMERGE, a Retrieval-Augmented Generation (RAG) driven framework aimed at enhancing multimodal EHR predictive modeling. Our approach extracts entities from both time-series data and clinical notes by prompting Large Language Models (LLMs) and aligns them with professional PrimeKG to ensure consistency. Beyond triplet relationships, we include entities' definitions and descriptions to provide richer semantics. The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses. These summaries are fused with other modalities utilizing an adaptive multimodal fusion network with cross-attention. Extensive experiments on the MIMIC-III and MIMIC-IV datasets for in-hospital mortality and 30-day readmission tasks demonstrate the superior performance of the EMERGE framework compared to baseline models. Comprehensive ablation studies and analyses underscore the efficacy of each designed module and the framework's robustness to data sparsity. EMERGE significantly enhances the use of multimodal EHR data in healthcare, bridging the gap with nuanced medical contexts crucial for informed clinical predictions.


REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models

arXiv.org Artificial Intelligence

The integration of multimodal Electronic Health Records (EHR) data has significantly improved clinical predictive capabilities. Leveraging clinical notes and multivariate time-series EHR, existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge, particularly from the knowledge graph (KG). Previous approaches with KG knowledge have primarily focused on structured knowledge extraction, neglecting unstructured data modalities and semantic high dimensional medical knowledge. In response, we propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations that address these limitations. Firstly, we apply Large Language Model (LLM) to encode long context clinical notes and GRU model to encode time-series EHR data. Secondly, we prompt LLM to extract task-relevant medical entities and match entities in professionally labeled external knowledge graph (PrimeKG) with corresponding medical knowledge. By matching and aligning with clinical standards, our framework eliminates hallucinations and ensures consistency. Lastly, we propose an adaptive multimodal fusion network to integrate extracted knowledge with multimodal EHR data. Our extensive experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines, emphasizing the effectiveness of each module. REALM framework contributes to refining the use of multimodal EHR data in healthcare and bridging the gap with nuanced medical context essential for informed clinical predictions.


Prompting Large Language Models for Zero-Shot Clinical Prediction with Structured Longitudinal Electronic Health Record Data

arXiv.org Artificial Intelligence

The inherent complexity of structured longitudinal Electronic Health Records (EHR) data poses a significant challenge when integrated with Large Language Models (LLMs), which are traditionally tailored for natural language processing. Motivated by the urgent need for swift decision-making during new disease outbreaks, where traditional predictive models often fail due to a lack of historical data, this research investigates the adaptability of LLMs, like GPT-4, to EHR data. We particularly focus on their zero-shot capabilities, which enable them to make predictions in scenarios in which they haven't been explicitly trained. In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific EHR characteristics such as units and reference ranges, and employing an in-context learning strategy that aligns with clinical contexts. Our comprehensive experiments on the MIMIC-IV and TJH datasets demonstrate that with our elaborately designed prompting framework, LLMs can improve prediction performance in key tasks such as mortality, length-of-stay, and 30-day readmission by about 35\%, surpassing ML models in few-shot settings. Our research underscores the potential of LLMs in enhancing clinical decision-making, especially in urgent healthcare situations like the outbreak of emerging diseases with no labeled data. The code is publicly available at https://github.com/yhzhu99/llm4healthcare for reproducibility.


Learnable Prompt as Pseudo-Imputation: Reassessing the Necessity of Traditional EHR Data Imputation in Downstream Clinical Prediction

arXiv.org Artificial Intelligence

Analyzing the health status of patients based on Electronic Health Records (EHR) is a fundamental research problem in medical informatics. The presence of extensive missing values in EHR makes it challenging for deep neural networks to directly model the patient's health status based on EHR. Existing deep learning training protocols require the use of statistical information or imputation models to reconstruct missing values; however, the protocols inject non-realistic data into downstream EHR analysis models, significantly limiting model performance. This paper introduces Learnable Prompt as Pseudo Imputation (PAI) as a new training protocol. PAI no longer introduces any imputed data but constructs a learnable prompt to model the implicit preferences of the downstream model for missing values, resulting in a significant performance improvement for all EHR analysis models. Additionally, our experiments show that PAI exhibits higher robustness in situations of data insufficiency and high missing rates. More importantly, in a real-world application involving cross-institutional data with zero-shot evaluation, PAI demonstrates stronger model generalization capabilities for non-overlapping features.


PRISM: Leveraging Prototype Patient Representations with Feature-Missing-Aware Calibration for EHR Data Sparsity Mitigation

arXiv.org Artificial Intelligence

Electronic Health Record (EHR) data, while rich in information, often suffers from sparsity, posing significant challenges in predictive modeling. Traditional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies in models. Addressing this, we introduce PRISM, a novel approach that indirectly imputes data through prototype representations of similar patients, thus ensuring denser and more accurate embeddings. PRISM innovates further with a feature confidence learner module, which evaluates the reliability of each feature in light of missing data. Additionally, it incorporates a novel patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III and MIMIC-IV datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at https://github.com/yhzhu99/PRISM.


MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction

arXiv.org Artificial Intelligence

Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\footnote{\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}}.


Multilingual Entity and Relation Extraction from Unified to Language-specific Training

arXiv.org Artificial Intelligence

Entity and relation extraction is a key task in information extraction, where the output can be used for downstream NLP tasks. Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages. Thus, it is critical to improving performance in a multilingual setting. Meanwhile, multilingual training is usually used to boost cross-lingual performance by transferring knowledge from languages (e.g., high-resource) to other (e.g., low-resource) languages. However, language interference usually exists in multilingual tasks as the model parameters are shared among all languages. In this paper, we propose a two-stage multilingual training method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference across languages. Specifically, we randomly concatenate sentences in different languages to train a Language-universal Aggregator (LA), which narrows the distance of embedding representations by obtaining the unified language representation. Then, we separate parameters to mitigate interference via tuning a Language-specific Switcher (LS), which includes several independent sub-modules to refine the language-specific feature representation. After that, to enhance the relational triple extraction, the sentence representations concatenated with the relation feature are used to recognize the entities. Extensive experimental results show that our method outperforms both the monolingual and multilingual baseline methods. Besides, we also perform detailed analysis to show that mERE is lightweight but effective on relational triple extraction and mERE{} is easy to transfer to other backbone models of multi-field tasks, which further demonstrates the effectiveness of our method.