Goto

Collaborating Authors

 Wang, Zilin


A Novel Automatic Real-time Motion Tracking Method for Magnetic Resonance Imaging-guided Radiotherapy: Leveraging the Enhanced Tracking-Learning-Detection Framework with Automatic Segmentation

arXiv.org Artificial Intelligence

Background and Purpose: Accurate motion tracking in MRI-guided Radiotherapy (MRIgRT) is essential for effective treatment delivery. This study aimed to enhance motion tracking precision in MRIgRT through an automatic real-time markerless tracking method using an enhanced Tracking-Learning-Detection (ETLD) framework with automatic segmentation. Materials and Methods: We developed a novel MRIgRT motion tracking and segmentation method by integrating the ETLD framework with an improved Chan-Vese model (ICV), named ETLD+ICV. The ETLD framework was upgraded for real-time cine MRI, including advanced image preprocessing, no-reference image quality assessment, an enhanced median-flow tracker, and a refined detector with dynamic search region adjustments. ICV was used for precise target volume coverage, refining the segmented region frame by frame using tracking results, with key parameters optimized. The method was tested on 3.5D MRI scans from 10 patients with liver metastases. Results: Evaluation of 106,000 frames across 77 treatment fractions showed sub-millimeter tracking errors of less than 0.8mm, with over 99% precision and 98% recall for all subjects in the Beam Eye View(BEV)/Beam Path View(BPV) orientation. The ETLD+ICV method achieved a dice global score of more than 82% for all subjects, demonstrating the method's extensibility and precise target volume coverage. Conclusion: This study successfully developed an automatic real-time markerless motion tracking method for MRIgRT that significantly outperforms current methods. The novel method not only delivers exceptional precision in tracking and segmentation but also shows enhanced adaptability to clinical demands, making it an indispensable asset in improving the efficacy of radiotherapy treatments.


Improving Generalization and Convergence by Enhancing Implicit Regularization

arXiv.org Machine Learning

In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decouples the dynamics of flat and sharp directions, which boosts the sharpness reduction along flat directions while maintaining the training stability in sharp directions. We show that IRE can be practically incorporated with {\em generic base optimizers} without introducing significant computational overload. Experiments show that IRE consistently improves the generalization performance for image classification tasks across a variety of benchmark datasets (CIFAR-10/100, ImageNet) and models (ResNets and ViTs). Surprisingly, IRE also achieves a $2\times$ {\em speed-up} compared to AdamW in the pre-training of Llama models (of sizes ranging from 60M to 229M) on datasets including Wikitext-103, Minipile, and Openwebtext. Moreover, we provide theoretical guarantees, showing that IRE can substantially accelerate the convergence towards flat minima in Sharpness-aware Minimization (SAM).


Explore 3D Dance Generation via Reward Model from Automatically-Ranked Demonstrations

arXiv.org Artificial Intelligence

This paper presents an Exploratory 3D Dance generation framework, E3D2, designed to address the exploration capability deficiency in existing music-conditioned 3D dance generation models. Current models often generate monotonous and simplistic dance sequences that misalign with human preferences because they lack exploration capabilities. The E3D2 framework involves a reward model trained from automatically-ranked dance demonstrations, which then guides the reinforcement learning process. This approach encourages the agent to explore and generate high quality and diverse dance movement sequences. The soundness of the reward model is both theoretically and experimentally validated. Empirical experiments demonstrate the effectiveness of E3D2 on the AIST++ dataset. Project Page: https://sites.google.com/view/e3d2.


Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning

arXiv.org Artificial Intelligence

Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms. Notably, employing simple observation transformations alone can yield outstanding performance without extra auxiliary representation tasks or pre-trained encoders. However, it remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL. To investigate this issue and further explore the potential of DA, this work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy and provides the following insights and improvements: (1) For individual DA operations, we reveal that both ample spatial diversity and slight hardness are indispensable. Building on this finding, we introduce Random PadResize (Rand PR), a new DA operation that offers abundant spatial diversity with minimal hardness. (2) For multi-type DA fusion schemes, the increased DA hardness and unstable data distribution result in the current fusion schemes being unable to achieve higher sample efficiency than their corresponding individual operations. Taking the non-stationary nature of RL into account, we propose a RL-tailored multi-type DA fusion scheme called Cycling Augmentation (CycAug), which performs periodic cycles of different DA operations to increase type diversity while maintaining data distribution consistency. Extensive evaluations on the DeepMind Control suite and CARLA driving simulator demonstrate that our methods achieve superior sample efficiency compared with the prior state-of-the-art methods.


Distance-rank Aware Sequential Reward Learning for Inverse Reinforcement Learning with Sub-optimal Demonstrations

arXiv.org Artificial Intelligence

Inverse reinforcement learning (IRL) aims to explicitly infer an underlying reward function based on collected expert demonstrations. Considering that obtaining expert demonstrations can be costly, the focus of current IRL techniques is on learning a better-than-demonstrator policy using a reward function derived from sub-optimal demonstrations. However, existing IRL algorithms primarily tackle the challenge of trajectory ranking ambiguity when learning the reward function. They overlook the crucial role of considering the degree of difference between trajectories in terms of their returns, which is essential for further removing reward ambiguity. Additionally, it is important to note that the reward of a single transition is heavily influenced by the context information within the trajectory. To address these issues, we introduce the Distance-rank Aware Sequential Reward Learning (DRASRL) framework. Unlike existing approaches, DRASRL takes into account both the ranking of trajectories and the degrees of dissimilarity between them to collaboratively eliminate reward ambiguity when learning a sequence of contextually informed reward signals. Specifically, we leverage the distance between policies, from which the trajectories are generated, as a measure to quantify the degree of differences between traces. This distance-aware information is then used to infer embeddings in the representation space for reward learning, employing the contrastive learning technique. Meanwhile, we integrate the pairwise ranking loss function to incorporate ranking information into the latent features. Moreover, we resort to the Transformer architecture to capture the contextual dependencies within the trajectories in the latent space, leading to more accurate reward estimation. Through extensive experimentation, our DRASRL framework demonstrates significant performance improvements over previous SOTA methods.


UnifiedGesture: A Unified Gesture Synthesis Model for Multiple Skeletons

arXiv.org Artificial Intelligence

The automatic co-speech gesture generation draws much attention in computer animation. Previous works designed network structures on individual datasets, which resulted in a lack of data volume and generalizability across different motion capture standards. In addition, it is a challenging task due to the weak correlation between speech and gestures. To address these problems, we present UnifiedGesture, a novel diffusion model-based speech-driven gesture synthesis approach, trained on multiple gesture datasets with different skeletons. Specifically, we first present a retargeting network to learn latent homeomorphic graphs for different motion capture standards, unifying the representations of various gestures while extending the dataset. We then capture the correlation between speech and gestures based on a diffusion model architecture using cross-local attention and self-attention to generate better speech-matched and realistic gestures. To further align speech and gesture and increase diversity, we incorporate reinforcement learning on the discrete gesture units with a learned reward function. Extensive experiments show that UnifiedGesture outperforms recent approaches on speech-driven gesture generation in terms of CCA, FGD, and human-likeness. All code, pre-trained models, databases, and demos are available to the public at https://github.com/YoungSeng/UnifiedGesture.


Normalization Enhances Generalization in Visual Reinforcement Learning

arXiv.org Artificial Intelligence

Recent advances in visual reinforcement learning (RL) have led to impressive success in handling complex tasks. However, these methods have demonstrated limited generalization capability to visual disturbances, which poses a significant challenge for their real-world application and adaptability. Though normalization techniques have demonstrated huge success in supervised and unsupervised learning, their applications in visual RL are still scarce. In this paper, we explore the potential benefits of integrating normalization into visual RL methods with respect to generalization performance. We find that, perhaps surprisingly, incorporating suitable normalization techniques is sufficient to enhance the generalization capabilities, without any additional special design. We utilize the combination of two normalization techniques, CrossNorm and SelfNorm, for generalizable visual RL. Extensive experiments are conducted on DMControl Generalization Benchmark and CARLA to validate the effectiveness of our method. We show that our method significantly improves generalization capability while only marginally affecting sample efficiency. In particular, when integrated with DrQ-v2, our method enhances the test performance of DrQ-v2 on CARLA across various scenarios, from 14% of the training performance to 97%.


Watch-And-Help: A Challenge for Social Perception and Human-AI Collaboration

arXiv.org Artificial Intelligence

In this paper, we introduce Watch-And-Help (WAH), a challenge for testing social intelligence in agents. In WAH, an AI agent needs to help a humanlike agent perform a complex household task efficiently. To succeed, the AI agent needs to i) understand the underlying goal of the task by watching a single demonstration of the humanlike agent performing the same task (social perception), and ii) coordinate with the humanlike agent to solve the task in an unseen environment as fast as possible (human-AI collaboration). For this challenge, we build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines. We evaluate the performance of AI agents with the humanlike agent as well as with real humans using objective metrics and subjective user ratings. Experimental results demonstrate that the proposed challenge and virtual environment enable a systematic evaluation on the important aspects of machine social intelligence at scale. Without much prior experience, children can robustly recognize goals of other people by simply watching them act in an environment, and are able to come up with plans to help them, even in novel scenarios. In contrast, the most advanced AI systems to date still struggle with such basic social skills. In order to achieve the level of social intelligence required to effectively help humans, an AI agent should acquire two key abilities: i) social perception, i.e., the ability to understand human behavior, and ii) collaborative planning, i.e., the ability to reason about the physical environment and plan its actions to coordinate with humans. In this paper, we are interested in developing AI agents with these two abilities. Towards this goal, we introduce a new AI challenge, Watch-And-Help (WAH), which focuses on social perception and human-AI collaboration. In this challenge, an AI agent needs to collaborate with a humanlike agent to enable it to achieve the goal faster. In particular, we present a 2-stage framework as shown in Figure 1. In the first, Watch stage, an AI agent (Bob) watches a humanlike agent (Alice) performing a task once and infers Alice's goal from her actions.