Wang, Zicheng
Imbalanced Medical Image Segmentation with Pixel-dependent Noisy Labels
Guo, Erjian, Wang, Zicheng, Zhao, Zhen, Zhou, Luping
Accurate medical image segmentation is often hindered by noisy labels in training data, due to the challenges of annotating medical images. Prior research works addressing noisy labels tend to make class-dependent assumptions, overlooking the pixel-dependent nature of most noisy labels. Furthermore, existing methods typically apply fixed thresholds to filter out noisy labels, risking the removal of minority classes and consequently degrading segmentation performance. To bridge these gaps, our proposed framework, Collaborative Learning with Curriculum Selection (CLCS), addresses pixel-dependent noisy labels with class imbalance. CLCS advances the existing works by i) treating noisy labels as pixel-dependent and addressing them through a collaborative learning framework, and ii) employing a curriculum dynamic thresholding approach adapting to model learning progress to select clean data samples to mitigate the class imbalance issue, and iii) applying a noise balance loss to noisy data samples to improve data utilization instead of discarding them outright. Specifically, our CLCS contains two modules: Curriculum Noisy Label Sample Selection (CNS) and Noise Balance Loss (NBL). In the CNS module, we designed a two-branch network with discrepancy loss for collaborative learning so that different feature representations of the same instance could be extracted from distinct views and used to vote the class probabilities of pixels. Besides, a curriculum dynamic threshold is adopted to select clean-label samples through probability voting. In the NBL module, instead of directly dropping the suspiciously noisy labels, we further adopt a robust loss to leverage such instances to boost the performance.
MoTe: Learning Motion-Text Diffusion Model for Multiple Generation Tasks
Wu, Yiming, Ji, Wei, Zheng, Kecheng, Wang, Zicheng, Xu, Dong
Recently, human motion analysis has experienced great improvement due to inspiring generative models such as the denoising diffusion model and large language model. While the existing approaches mainly focus on generating motions with textual descriptions and overlook the reciprocal task. In this paper, we present~\textbf{MoTe}, a unified multi-modal model that could handle diverse tasks by learning the marginal, conditional, and joint distributions of motion and text simultaneously. MoTe enables us to handle the paired text-motion generation, motion captioning, and text-driven motion generation by simply modifying the input context. Specifically, MoTe is composed of three components: Motion Encoder-Decoder (MED), Text Encoder-Decoder (TED), and Moti-on-Text Diffusion Model (MTDM). In particular, MED and TED are trained for extracting latent embeddings, and subsequently reconstructing the motion sequences and textual descriptions from the extracted embeddings, respectively. MTDM, on the other hand, performs an iterative denoising process on the input context to handle diverse tasks. Experimental results on the benchmark datasets demonstrate the superior performance of our proposed method on text-to-motion generation and competitive performance on motion captioning.
When eBPF Meets Machine Learning: On-the-fly OS Kernel Compartmentalization
Wang, Zicheng, Chen, Tiejin, Dai, Qinrun, Chen, Yueqi, Wei, Hua, Zeng, Qingkai
Compartmentalization effectively prevents initial corruption from turning into a successful attack. This paper presents O2C, a pioneering system designed to enforce OS kernel compartmentalization on the fly. It not only provides immediate remediation for sudden threats but also maintains consistent system availability through the enforcement process. O2C is empowered by the newest advancements of the eBPF ecosystem which allows to instrument eBPF programs that perform enforcement actions into the kernel at runtime. O2C takes the lead in embedding a machine learning model into eBPF programs, addressing unique challenges in on-the-fly compartmentalization. Our comprehensive evaluation shows that O2C effectively confines damage within the compartment. Further, we validate that decision tree is optimally suited for O2C owing to its advantages in processing tabular data, its explainable nature, and its compliance with the eBPF ecosystem. Last but not least, O2C is lightweight, showing negligible overhead and excellent sacalability system-wide.