Goto

Collaborating Authors

 Wang, Zhiyuan


MAPS: A Multi-Agent Framework Based on Big Seven Personality and Socratic Guidance for Multimodal Scientific Problem Solving

arXiv.org Artificial Intelligence

Multimodal scientific problems (MSPs) involve complex issues that require the integration of multiple modalities, such as text and diagrams, presenting a significant challenge in artificial intelligence. While progress has been made in addressing traditional scientific problems, MSPs still face two primary issues: the challenge of multi-modal comprehensive reasoning in scientific problem-solving and the lack of reflective and rethinking capabilities. To address these issues, we introduce a Multi-Agent framework based on the Big Seven Personality and Socratic guidance (MAPS). This framework employs seven distinct agents that leverage feedback mechanisms and the Socratic method to guide the resolution of MSPs. To tackle the first issue, we propose a progressive four-agent solving strategy, where each agent focuses on a specific stage of the problem-solving process. For the second issue, we introduce a Critic agent, inspired by Socratic questioning, which prompts critical thinking and stimulates autonomous learning. We conduct extensive experiments on the EMMA, Olympiad, and MathVista datasets, achieving promising results that outperform the current SOTA model by 15.84% across all tasks. Meanwhile, the additional analytical experiments also verify the model's progress as well as generalization ability.


CALLM: Context-Aware Emotion Analysis in Cancer Survivors Using LLMs and Retrieval-Augmented Mobile Diaries

arXiv.org Artificial Intelligence

Cancer survivors face unique emotional challenges that impact their quality of life. Mobile diary entries-short text entries recording through their phone about their emotional experiences-provide a promising method for tracking these experiences in real time. Although emotion analysis tools show potential for recognizing emotions from text, current methods lack the contextual understanding necessary to accurately interpret the brief, personal narratives in mobile diaries. We propose CALLM, a context-aware emotion analysis framework that leverages Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), to analyze mobile diary entries from cancer survivors to predict their emotional states. The framework enhances prediction accuracy beyond existing methods by (1) integrating retrieved peer experiences as contextual examples and (2) incorporating individuals' temporal emotional trajectories from their mobile diary entries. We collected a large-scale dataset (N=407) of cancer survivors' mobile ecological momentary assessments (EMAs), which assessed positive and negative affect, desire to regulate emotions, social interaction quality, and availability for interventions, alongside daily mobile diary entries in an open response format regarding what was driving their current emotional experience. Results demonstrate strong performance of CALLM, with balanced accuracies reaching 72.96% for positive and 73.29% for negative affect, and 73.72% for predicting individual's desire to regulate emotions. Post-hoc analysis reveals that leveraging model confidence, encouraging longer diary entries, and incorporating personal ground truth, further enhance predictive outcomes. Our findings support the feasibility of deploying LLM-powered emotion analysis in chronic health populations and suggest promising directions for personalized interventions for cancer survivors.


Reinforcement Learning for Quantum Circuit Design: Using Matrix Representations

arXiv.org Artificial Intelligence

Quantum computing promises advantages over classical computing. The manufacturing of quantum hardware is in the infancy stage, called the Noisy Intermediate-Scale Quantum (NISQ) era. A major challenge is automated quantum circuit design that map a quantum circuit to gates in a universal gate set. In this paper, we present a generic MDP modeling and employ Q-learning and DQN algorithms for quantum circuit design. By leveraging the power of deep reinforcement learning, we aim to provide an automatic and scalable approach over traditional hand-crafted heuristic methods.


Generative AI for Cel-Animation: A Survey

arXiv.org Artificial Intelligence

Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, issues such as maintaining visual consistency, ensuring stylistic coherence, and addressing ethical considerations continue to pose challenges. Furthermore, this paper discusses future directions and explores potential advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation


Sample then Identify: A General Framework for Risk Control and Assessment in Multimodal Large Language Models

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering (VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.


PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models

arXiv.org Artificial Intelligence

Effective patient-provider communication is crucial in clinical care, directly impacting patient outcomes and quality of life. Traditional evaluation methods, such as human ratings, patient feedback, and provider self-assessments, are often limited by high costs and scalability issues. Although existing natural language processing (NLP) techniques show promise, they struggle with the nuances of clinical communication and require sensitive clinical data for training, reducing their effectiveness in real-world applications. Emerging large language models (LLMs) offer a new approach to assessing complex communication metrics, with the potential to advance the field through integration into passive sensing and just-in-time intervention systems. This study explores LLMs as evaluators of palliative care communication quality, leveraging their linguistic, in-context learning, and reasoning capabilities. Specifically, using simulated scripts crafted and labeled by healthcare professionals, we test proprietary models (e.g., GPT-4) and fine-tune open-source LLMs (e.g., LLaMA2) with a synthetic dataset generated by GPT-4 to evaluate clinical conversations, to identify key metrics such as `understanding' and `empathy'. Our findings demonstrated LLMs' superior performance in evaluating clinical communication, providing actionable feedback with reasoning, and demonstrating the feasibility and practical viability of developing in-house LLMs. This research highlights LLMs' potential to enhance patient-provider interactions and lays the groundwork for downstream steps in developing LLM-empowered clinical health systems.


Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents

arXiv.org Artificial Intelligence

This article explores the convergence of connectionist and symbolic artificial intelligence (AI), from historical debates to contemporary advancements. Traditionally considered distinct paradigms, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic. Recent advancements in large language models (LLMs), exemplified by ChatGPT and GPT-4, highlight the potential of connectionist architectures in handling human language as a form of symbols. The study argues that LLM-empowered Autonomous Agents (LAAs) embody this paradigm convergence. By utilizing LLMs for text-based knowledge modeling and representation, LAAs integrate neuro-symbolic AI principles, showcasing enhanced reasoning and decision-making capabilities. Comparing LAAs with Knowledge Graphs within the neuro-symbolic AI theme highlights the unique strengths of LAAs in mimicking human-like reasoning processes, scaling effectively with large datasets, and leveraging in-context samples without explicit re-training. The research underscores promising avenues in neuro-vector-symbolic integration, instructional encoding, and implicit reasoning, aimed at further enhancing LAA capabilities. By exploring the progression of neuro-symbolic AI and proposing future research trajectories, this work advances the understanding and development of AI technologies.


ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees

arXiv.org Artificial Intelligence

Uncertainty quantification (UQ) in natural language generation (NLG) tasks remains an open challenge, exacerbated by the intricate nature of the recent large language models (LLMs). This study investigates adapting conformal prediction (CP), which can convert any heuristic measure of uncertainty into rigorous theoretical guarantees by constructing prediction sets, for black-box LLMs in open-ended NLG tasks. We propose a sampling-based uncertainty measure leveraging self-consistency and develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the design of the CP algorithm. Experimental results indicate that our uncertainty measure generally surpasses prior state-of-the-art methods. Furthermore, we calibrate the prediction sets within the model's unfixed answer distribution and achieve strict control over the correctness coverage rate across 6 LLMs on 4 free-form NLG datasets, spanning general-purpose and medical domains, while the small average set size further highlights the efficiency of our method in providing trustworthy guarantees for practical open-ended NLG applications.


Estimating Difficulty Levels of Programming Problems with Pre-trained Model

arXiv.org Artificial Intelligence

As the demand for programming skills grows across industries and academia, students often turn to Programming Online Judge (POJ) platforms for coding practice and competition. The difficulty level of each programming problem serves as an essential reference for guiding students' adaptive learning. However, current methods of determining difficulty levels either require extensive expert annotations or take a long time to accumulate enough student solutions for each problem. To address this issue, we formulate the problem of automatic difficulty level estimation of each programming problem, given its textual description and a solution example of code. For tackling this problem, we propose to couple two pre-trained models, one for text modality and the other for code modality, into a unified model. We built two POJ datasets for the task and the results demonstrate the effectiveness of the proposed approach and the contributions of both modalities.


Task-agnostic Decision Transformer for Multi-type Agent Control with Federated Split Training

arXiv.org Artificial Intelligence

With the rapid advancements in artificial intelligence, the development of knowledgeable and personalized agents has become increasingly prevalent. However, the inherent variability in state variables and action spaces among personalized agents poses significant aggregation challenges for traditional federated learning algorithms. To tackle these challenges, we introduce the Federated Split Decision Transformer (FSDT), an innovative framework designed explicitly for AI agent decision tasks. The FSDT framework excels at navigating the intricacies of personalized agents by harnessing distributed data for training while preserving data privacy. It employs a two-stage training process, with local embedding and prediction models on client agents and a global transformer decoder model on the server. Our comprehensive evaluation using the benchmark D4RL dataset highlights the superior performance of our algorithm in federated split learning for personalized agents, coupled with significant reductions in communication and computational overhead compared to traditional centralized training approaches. The FSDT framework demonstrates strong potential for enabling efficient and privacy-preserving collaborative learning in applications such as autonomous driving decision systems. Our findings underscore the efficacy of the FSDT framework in effectively leveraging distributed offline reinforcement learning data to enable powerful multi-type agent decision systems.