Goto

Collaborating Authors

 Wang, Zhao


Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs

arXiv.org Artificial Intelligence

Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of the earlier modalities (e.g., images) to incorporate information from the latter modalities (e.g., text). To address this problem, we propose \MapleLeaf AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code and model are publicly available at https://github.com/sony/aki to encourage further advancements in MLLMs across various directions.


Unlocking Pretrained LLMs for Motion-Related Multimodal Generation: A Fine-Tuning Approach to Unify Diffusion and Next-Token Prediction

arXiv.org Artificial Intelligence

In this paper, we propose a unified framework that leverages a single pretrained LLM for Motion-related Multimodal Generation, referred to as MoMug. MoMug integrates diffusion-based continuous motion generation with the model's inherent autoregressive discrete text prediction capabilities by fine-tuning a pretrained LLM. This enables seamless switching between continuous motion output and discrete text token prediction within a single model architecture, effectively combining the strengths of both diffusion- and LLM-based approaches. Experimental results show that, compared to the most recent LLM-based baseline, MoMug improves FID by 38% and mean accuracy across seven metrics by 16.61% on the text-to-motion task. Additionally, it improves mean accuracy across eight metrics by 8.44% on the text-to-motion task. To the best of our knowledge, this is the first approach to integrate diffusion- and LLM-based generation within a single model for motion-related multimodal tasks while maintaining low training costs. This establishes a foundation for future advancements in motion-related generation, paving the way for high-quality yet cost-efficient motion synthesis.


Talk Structurally, Act Hierarchically: A Collaborative Framework for LLM Multi-Agent Systems

arXiv.org Artificial Intelligence

Recent advancements in LLM-based multi-agent (LLM-MA) systems have shown promise, yet significant challenges remain in managing communication and refinement when agents collaborate on complex tasks. In this paper, we propose \textit{Talk Structurally, Act Hierarchically (TalkHier)}, a novel framework that introduces a structured communication protocol for context-rich exchanges and a hierarchical refinement system to address issues such as incorrect outputs, falsehoods, and biases. \textit{TalkHier} surpasses various types of SoTA, including inference scaling model (OpenAI-o1), open-source multi-agent models (e.g., AgentVerse), and majority voting strategies on current LLM and single-agent baselines (e.g., ReAct, GPT4o), across diverse tasks, including open-domain question answering, domain-specific selective questioning, and practical advertisement text generation. These results highlight its potential to set a new standard for LLM-MA systems, paving the way for more effective, adaptable, and collaborative multi-agent frameworks. The code is available https://github.com/sony/talkhier.


Large Images are Gaussians: High-Quality Large Image Representation with Levels of 2D Gaussian Splatting

arXiv.org Artificial Intelligence

While Implicit Neural Representations (INRs) have demonstrated significant success in image representation, they are often hindered by large training memory and slow decoding speed. Recently, Gaussian Splatting (GS) has emerged as a promising solution in 3D reconstruction due to its high-quality novel view synthesis and rapid rendering capabilities, positioning it as a valuable tool for a broad spectrum of applications. In particular, a GS-based representation, 2DGS, has shown potential for image fitting. In our work, we present \textbf{L}arge \textbf{I}mages are \textbf{G}aussians (\textbf{LIG}), which delves deeper into the application of 2DGS for image representations, addressing the challenge of fitting large images with 2DGS in the situation of numerous Gaussian points, through two distinct modifications: 1) we adopt a variant of representation and optimization strategy, facilitating the fitting of a large number of Gaussian points; 2) we propose a Level-of-Gaussian approach for reconstructing both coarse low-frequency initialization and fine high-frequency details. Consequently, we successfully represent large images as Gaussian points and achieve high-quality large image representation, demonstrating its efficacy across various types of large images. Code is available at {\href{https://github.com/HKU-MedAI/LIG}{https://github.com/HKU-MedAI/LIG}}.


Adaptive Budget Optimization for Multichannel Advertising Using Combinatorial Bandits

arXiv.org Artificial Intelligence

Effective budget allocation is crucial for optimizing the performance of digital advertising campaigns. However, the development of practical budget allocation algorithms remain limited, primarily due to the lack of public datasets and comprehensive simulation environments capable of verifying the intricacies of real-world advertising. While multi-armed bandit (MAB) algorithms have been extensively studied, their efficacy diminishes in non-stationary environments where quick adaptation to changing market dynamics is essential. In this paper, we advance the field of budget allocation in digital advertising by introducing three key contributions. First, we develop a simulation environment designed to mimic multichannel advertising campaigns over extended time horizons, incorporating logged real-world data. Second, we propose an enhanced combinatorial bandit budget allocation strategy that leverages a saturating mean function and a targeted exploration mechanism with change-point detection. This approach dynamically adapts to changing market conditions, improving allocation efficiency by filtering target regions based on domain knowledge. Finally, we present both theoretical analysis and empirical results, demonstrating that our method consistently outperforms baseline strategies, achieving higher rewards and lower regret across multiple real-world campaigns.


Exploring the latent space of diffusion models directly through singular value decomposition

arXiv.org Artificial Intelligence

Despite the groundbreaking success of diffusion models in generating high-fidelity images, their latent space remains relatively under-explored, even though it holds significant promise for enabling versatile and interpretable image editing capabilities. The complicated denoising trajectory and high dimensionality of the latent space make it extremely challenging to interpret. Existing methods mainly explore the feature space of U-Net in Diffusion Models (DMs) instead of the latent space itself. In contrast, we directly investigate the latent space via Singular Value Decomposition (SVD) and discover three useful properties that can be used to control generation results without the requirements of data collection and maintain identity fidelity generated images. Based on these properties, we propose a novel image editing framework that is capable of learning arbitrary attributes from one pair of latent codes destined by text prompts in Stable Diffusion Models. To validate our approach, extensive experiments are conducted to demonstrate its effectiveness and flexibility in image editing. We will release our codes soon to foster further research and applications in this area.


Auto-bidding in real-time auctions via Oracle Imitation Learning (OIL)

arXiv.org Artificial Intelligence

Online advertising has become one of the most successful business models of the internet era. Impression opportunities are typically allocated through real-time auctions, where advertisers bid to secure advertisement slots. Deciding the best bid for an impression opportunity is challenging, due to the stochastic nature of user behavior and the variability of advertisement traffic over time. In this work, we propose a framework for training auto-bidding agents in multi-slot second-price auctions to maximize acquisitions (e.g., clicks, conversions) while adhering to budget and cost-per-acquisition (CPA) constraints. We exploit the insight that, after an advertisement campaign concludes, determining the optimal bids for each impression opportunity can be framed as a multiple-choice knapsack problem (MCKP) with a nonlinear objective. We propose an "oracle" algorithm that identifies a near-optimal combination of impression opportunities and advertisement slots, considering both past and future advertisement traffic data. This oracle solution serves as a training target for a student network which bids having access only to real-time information, a method we term Oracle Imitation Learning (OIL). Through numerical experiments, we demonstrate that OIL achieves superior performance compared to both online and offline reinforcement learning algorithms, offering improved sample efficiency. Notably, OIL shifts the complexity of training auto-bidding agents from crafting sophisticated learning algorithms to solving a nonlinear constrained optimization problem efficiently.


OKG: On-the-Fly Keyword Generation in Sponsored Search Advertising

arXiv.org Artificial Intelligence

Current keyword decision-making in sponsored search advertising relies on large, static datasets, limiting the ability to automatically set up keywords and adapt to real-time KPI metrics and product updates that are essential for effective advertising. In this paper, we propose On-the-fly Keyword Generation (OKG), an LLM agent-based method that dynamically monitors KPI changes and adapts keyword generation in real time, aligning with strategies recommended by advertising platforms. Additionally, we introduce the first publicly accessible dataset containing real keyword data along with its KPIs across diverse domains, providing a valuable resource for future research. Experimental results show that OKG significantly improves keyword adaptability and responsiveness compared to traditional methods. The code for OKG and the dataset are available at https://github.com/sony/okg.


Integrating Domain Knowledge for handling Limited Data in Offline RL

arXiv.org Artificial Intelligence

With the ability to learn from static datasets, Offline Reinforcement Learning (RL) emerges as a compelling avenue for real-world applications. However, state-of-the-art offline RL algorithms perform sub-optimally when confronted with limited data confined to specific regions within the state space. The performance degradation is attributed to the inability of offline RL algorithms to learn appropriate actions for rare or unseen observations. This paper proposes a novel domain knowledge-based regularization technique and adaptively refines the initial domain knowledge to considerably boost performance in limited data with partially omitted states. The key insight is that the regularization term mitigates erroneous actions for sparse samples and unobserved states covered by domain knowledge. Empirical evaluations on standard discrete environment datasets demonstrate a substantial average performance increase of at least 27% compared to existing offline RL algorithms operating on limited data.


Augmenting Offline RL with Unlabeled Data

arXiv.org Artificial Intelligence

Recent advancements in offline Reinforcement Learning (Offline RL) have led to an increased focus on methods based on conservative policy updates to address the Out-of-Distribution (OOD) issue. These methods typically involve adding behavior regularization or modifying the critic learning objective, focusing primarily on states or actions with substantial dataset support. However, we challenge this prevailing notion by asserting that the absence of an action or state from a dataset does not necessarily imply its suboptimality. In this paper, we propose a novel approach to tackle the OOD problem. We introduce an offline RL teacher-student framework, complemented by a policy similarity measure. This framework enables the student policy to gain insights not only from the offline RL dataset but also from the knowledge transferred by a teacher policy. The teacher policy is trained using another dataset consisting of state-action pairs, which can be viewed as practical domain knowledge acquired without direct interaction with the environment. We believe this additional knowledge is key to effectively solving the OOD issue. This research represents a significant advancement in integrating a teacher-student network into the actor-critic framework, opening new avenues for studies on knowledge transfer in offline RL and effectively addressing the OOD challenge.