Goto

Collaborating Authors

 Wang, Yongwei


Motion-Coupled Mapping Algorithm for Hybrid Rice Canopy

arXiv.org Artificial Intelligence

This paper presents a motion-coupled mapping algorithm for contour mapping of hybrid rice canopies, specifically designed for Agricultural Unmanned Ground Vehicles (Agri-UGV) navigating complex and unknown rice fields. Precise canopy mapping is essential for Agri-UGVs to plan efficient routes and avoid protected zones. The motion control of Agri-UGVs, tasked with impurity removal and other operations, depends heavily on accurate estimation of rice canopy height and structure. To achieve this, the proposed algorithm integrates real-time RGB-D sensor data with kinematic and inertial measurements, enabling efficient mapping and proprioceptive localization. The algorithm produces grid-based elevation maps that reflect the probabilistic distribution of canopy contours, accounting for motion-induced uncertainties. It is implemented on a high-clearance Agri-UGV platform and tested in various environments, including both controlled and dynamic rice field settings. This approach significantly enhances the mapping accuracy and operational reliability of Agri-UGVs, contributing to more efficient autonomous agricultural operations.


DeMuVGN: Effective Software Defect Prediction Model by Learning Multi-view Software Dependency via Graph Neural Networks

arXiv.org Artificial Intelligence

Software defect prediction (SDP) aims to identify high-risk defect modules in software development, optimizing resource allocation. While previous studies show that dependency network metrics improve defect prediction, most methods focus on code-based dependency graphs, overlooking developer factors. Current metrics, based on handcrafted features like ego and global network metrics, fail to fully capture defect-related information. To address this, we propose DeMuVGN, a defect prediction model that learns multi-view software dependency via graph neural networks. We introduce a Multi-view Software Dependency Graph (MSDG) that integrates data, call, and developer dependencies. DeMuVGN also leverages the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and enhance defect module identification. In a case study of eight open-source projects across 20 versions, DeMuVGN demonstrates significant improvements: i) models based on multi-view graphs improve F1 scores by 11.1% to 12.1% over single-view models; ii) DeMuVGN improves F1 scores by 17.4% to 45.8% in within-project contexts and by 17.9% to 41.0% in cross-project contexts. Additionally, DeMuVGN excels in software evolution, showing more improvement in later-stage software versions. Its strong performance across different projects highlights its generalizability. We recommend future research focus on multi-view dependency graphs for defect prediction in both mature and newly developed projects.


Training-free LLM-generated Text Detection by Mining Token Probability Sequences

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities in generating high-quality texts across diverse domains. However, the potential misuse of LLMs has raised significant concerns, underscoring the urgent need for reliable detection of LLM-generated texts. Conventional training-based detectors often struggle with generalization, particularly in cross-domain and cross-model scenarios. In contrast, training-free methods, which focus on inherent discrepancies through carefully designed statistical features, offer improved generalization and interpretability. Despite this, existing training-free detection methods typically rely on global text sequence statistics, neglecting the modeling of local discriminative features, thereby limiting their detection efficacy. In this work, we introduce a novel training-free detector, termed \textbf{Lastde} that synergizes local and global statistics for enhanced detection. For the first time, we introduce time series analysis to LLM-generated text detection, capturing the temporal dynamics of token probability sequences. By integrating these local statistics with global ones, our detector reveals significant disparities between human and LLM-generated texts. We also propose an efficient alternative, \textbf{Lastde++} to enable real-time detection. Extensive experiments on six datasets involving cross-domain, cross-model, and cross-lingual detection scenarios, under both white-box and black-box settings, demonstrated that our method consistently achieves state-of-the-art performance. Furthermore, our approach exhibits greater robustness against paraphrasing attacks compared to existing baseline methods.


CCDM: Continuous Conditional Diffusion Models for Image Generation

arXiv.org Artificial Intelligence

Continuous Conditional Generative Modeling (CCGM) aims to estimate the distribution of high-dimensional data, typically images, conditioned on scalar continuous variables known as regression labels. While Continuous conditional Generative Adversarial Networks (CcGANs) were initially designed for this task, their adversarial training mechanism remains vulnerable to extremely sparse or imbalanced data, resulting in suboptimal outcomes. To enhance the quality of generated images, a promising alternative is to replace CcGANs with Conditional Diffusion Models (CDMs), renowned for their stable training process and ability to produce more realistic images. However, existing CDMs encounter challenges when applied to CCGM tasks due to several limitations such as inadequate U-Net architectures and deficient model fitting mechanisms for handling regression labels. In this paper, we introduce Continuous Conditional Diffusion Models (CCDMs), the first CDM designed specifically for the CCGM task. CCDMs address the limitations of existing CDMs by introducing specially designed conditional diffusion processes, a modified denoising U-Net with a custom-made conditioning mechanism, a novel hard vicinal loss for model fitting, and an efficient conditional sampling procedure. With comprehensive experiments on four datasets with varying resolutions ranging from 64x64 to 192x192, we demonstrate the superiority of the proposed CCDM over state-of-the-art CCGM models, establishing new benchmarks in CCGM. Extensive ablation studies validate the model design and implementation configuration of the proposed CCDM. Our code is publicly available at https://github.com/UBCDingXin/CCDM.


Impart: An Imperceptible and Effective Label-Specific Backdoor Attack

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) have achieved remarkable success in the past few years and they have been adopted in different applications (e.g., image classification (He, Zhang, Ren and Sun, 2016a), speech recognition (Xiong, Droppo, Huang, Seide, Seltzer, Stolcke, Yu and Zweig, 2016), game playing and natural language processing (Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot et al., 2016; Devlin, Chang, Lee and Toutanova, 2019)). However, with the deepening research on several real securitycritical scenarios, recent works show that even the state-of-the-art deep learning methods are vulnerable to backdoor attacks (Gu, Dolan-Gavitt and Garg, 2017; Barni, Kallas and Tondi, 2019; Cheng, Liu, Ma and Zhang, 2021; Li, Li, Wu, Li, He and Lyu, 2021a; Cheng, Wu, Zhang and Zhao, 2023). In backdoor attacks, an attacker injects a trigger into the victim model in the training process. The victim model performs normally as a benign model in the inference phase when the inputs are benign images. However, once the victim model is fed an input image with the backdoor trigger, the victim model behaves as the attacker predetermined. In the backdoor attack, there are two typical types of attack settings (Li, Jiang, Li and Xia, 2022): one is to poison different target labels (a.k.a., all-to-all), and the other is to poison one target label (a.k.a., all-to-one). Recent research on the backdoor attack for deep learning has focused on generating poisoned images that lead to misclassification results while keeping imperceptibility. LIRA (Doan, Lao, Zhao and Li, 2021b) and WB (Doan, Lao and Li, 2021a) have achieved effective and imperceptible backdoor attacks. However, they assume that the attacker has full access to the model information (e.g., model architecture, and model parameters), which significantly reduces their threats in practice.


HGAttack: Transferable Heterogeneous Graph Adversarial Attack

arXiv.org Artificial Intelligence

Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce, where resilience against adversarial attacks is crucial. However, existing adversarial attack methods, which are primarily designed for homogeneous graphs, fall short when applied to HGNNs due to their limited ability to address the structural and semantic complexity of HGNNs. This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs. We design a novel surrogate model to closely resemble the behaviors of the target HGNN and utilize gradient-based methods for perturbation generation. Specifically, the proposed surrogate model effectively leverages heterogeneous information by extracting meta-path induced subgraphs and applying GNNs to learn node embeddings with distinct semantics from each subgraph. This approach improves the transferability of generated attacks on the target HGNN and significantly reduces memory costs. For perturbation generation, we introduce a semantics-aware mechanism that leverages subgraph gradient information to autonomously identify vulnerable edges across a wide range of relations within a constrained perturbation budget. We validate HGAttack's efficacy with comprehensive experiments on three datasets, providing empirical analyses of its generated perturbations. Outperforming baseline methods, HGAttack demonstrated significant efficacy in diminishing the performance of target HGNN models, affirming the effectiveness of our approach in evaluating the robustness of HGNNs against adversarial attacks.


Turning Waste into Wealth: Leveraging Low-Quality Samples for Enhancing Continuous Conditional Generative Adversarial Networks

arXiv.org Artificial Intelligence

Continuous Conditional Generative Adversarial Networks (CcGANs) enable generative modeling conditional on continuous scalar variables (termed regression labels). However, they can produce subpar fake images due to limited training data. Although Negative Data Augmentation (NDA) effectively enhances unconditional and class-conditional GANs by introducing anomalies into real training images, guiding the GANs away from low-quality outputs, its impact on CcGANs is limited, as it fails to replicate negative samples that may occur during the CcGAN sampling. We present a novel NDA approach called Dual-NDA specifically tailored for CcGANs to address this problem. Dual-NDA employs two types of negative samples: visually unrealistic images generated from a pre-trained CcGAN and label-inconsistent images created by manipulating real images' labels. Leveraging these negative samples, we introduce a novel discriminator objective alongside a modified CcGAN training algorithm. Empirical analysis on UTKFace and Steering Angle reveals that Dual-NDA consistently enhances the visual fidelity and label consistency of fake images generated by CcGANs, exhibiting a substantial performance gain over the vanilla NDA. Moreover, by applying Dual-NDA, CcGANs demonstrate a remarkable advancement beyond the capabilities of state-of-the-art conditional GANs and diffusion models, establishing a new pinnacle of performance. Our codes can be found at https://github.com/UBCDingXin/Dual-NDA.


DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization

arXiv.org Artificial Intelligence

Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications. It aims to improve the generalization ability of pre-trained models when deployed on resource-constrained devices, such as improving the performance of pre-trained cloud models on smart mobiles. While quite a lot of works have investigated the data distribution shift across clouds and devices, most of them focus on model fine-tuning on personalized data for individual devices to facilitate DMG. Despite their promising, these approaches require on-device re-training, which is practically infeasible due to the overfitting problem and high time delay when performing gradient calculation on real-time data. In this paper, we argue that the computational cost brought by fine-tuning can be rather unnecessary. We consequently present a novel perspective to improving DMG without increasing computational cost, i.e., device-specific parameter generation which directly maps data distribution to parameters. Specifically, we propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET. DUET is deployed on a powerful cloud server that only requires the low cost of forwarding propagation and low time delay of data transmission between the device and the cloud. By doing so, DUET can rehearse the device-specific model weight realizations conditioned on the personalized real-time data for an individual device. Importantly, our DUET elegantly connects the cloud and device as a 'duet' collaboration, frees the DMG from fine-tuning, and enables a faster and more accurate DMG paradigm. We conduct an extensive experimental study of DUET on three public datasets, and the experimental results confirm our framework's effectiveness and generalisability for different DMG tasks.


Distilling and Transferring Knowledge via cGAN-generated Samples for Image Classification and Regression

arXiv.org Machine Learning

Knowledge distillation (KD) has been actively studied for image classification tasks in deep learning, aiming to improve the performance of a student model based on the knowledge from a teacher model. However, there have been very few efforts for applying KD in image regression with a scalar response, and there is no KD method applicable to both tasks. Moreover, existing KD methods often require a practitioner to carefully choose or adjust the teacher and student architectures, making these methods less scalable in practice. Furthermore, although KD is usually conducted in scenarios with limited labeled data, very few techniques are developed to alleviate such data insufficiency. To solve the above problems in an all-in-one manner, we propose in this paper a unified KD framework based on conditional generative adversarial networks (cGANs), termed cGAN-KD. Fundamentally different from existing KD methods, cGAN-KD distills and transfers knowledge from a teacher model to a student model via cGAN-generated samples. This unique mechanism makes cGAN-KD suitable for both classification and regression tasks, compatible with other KD methods, and insensitive to the teacher and student architectures. Also, benefiting from the recent advances in cGAN methodology and our specially designed subsampling and filtering procedures, cGAN-KD also performs well when labeled data are scarce. An error bound of a student model trained in the cGAN-KD framework is derived in this work, which theoretically explains why cGAN-KD takes effect and guides the implementation of cGAN-KD in practice. Extensive experiments on CIFAR-10 and Tiny-ImageNet show that we can incorporate state-of-the-art KD methods into the cGAN-KD framework to reach a new state of the art. Also, experiments on RC-49 and UTKFace demonstrate the effectiveness of cGAN-KD in image regression tasks, where existing KD methods are inapplicable.


Efficient Subsampling for Generating High-Quality Images from Conditional Generative Adversarial Networks

arXiv.org Machine Learning

Subsampling unconditional generative adversarial networks (GANs) to improve the overall image quality has been studied recently. However, these methods often require high training costs (e.g., storage space, parameter tuning) and may be inefficient or even inapplicable for subsampling conditional GANs, such as class-conditional GANs and continuous conditional GANs (CcGANs), when the condition has many distinct values. In this paper, we propose an efficient method called conditional density ratio estimation in feature space with conditional Softplus loss (cDRE-F-cSP). With cDRE-F-cSP, we estimate an image's conditional density ratio based on a novel conditional Softplus (cSP) loss in the feature space learned by a specially designed ResNet-34 or sparse autoencoder. We then derive the error bound of a conditional density ratio model trained with the proposed cSP loss. Finally, we propose a rejection sampling scheme, termed cDRE-F-cSP+RS, which can subsample both class-conditional GANs and CcGANs efficiently. An extra filtering scheme is also developed for CcGANs to increase the label consistency. Experiments on CIFAR-10 and Tiny-ImageNet datasets show that cDRE-F-cSP+RS can substantially improve the Intra-FID and FID scores of BigGAN. Experiments on RC-49 and UTKFace datasets demonstrate that cDRE-F-cSP+RS also improves Intra-FID, Diversity, and Label Score of CcGANs. Moreover, to show the high efficiency of cDRE-F-cSP+RS, we compare it with the state-of-the-art unconditional subsampling method (i.e., DRE-F-SP+RS). With comparable or even better performance, cDRE-F-cSP+RS only requires about \textbf{10}\% and \textbf{1.7}\% of the training costs spent respectively on CIFAR-10 and UTKFace by DRE-F-SP+RS.