Wang, Yinhai
PreMixer: MLP-Based Pre-training Enhanced MLP-Mixers for Large-scale Traffic Forecasting
Zhang, Tongtong, Cui, Zhiyong, Wang, Bingzhang, Ren, Yilong, Yu, Haiyang, Deng, Pan, Wang, Yinhai
In urban computing, precise and swift forecasting of multivariate time series data from traffic networks is crucial. This data incorporates additional spatial contexts such as sensor placements and road network layouts, and exhibits complex temporal patterns that amplify challenges for predictive learning in traffic management, smart mobility demand, and urban planning. Consequently, there is an increasing need to forecast traffic flow across broader geographic regions and for higher temporal coverage. However, current research encounters limitations because of the inherent inefficiency of model and their unsuitability for large-scale traffic network applications due to model complexity. This paper proposes a novel framework, named PreMixer, designed to bridge this gap. It features a predictive model and a pre-training mechanism, both based on the principles of Multi-Layer Perceptrons (MLP). The PreMixer comprehensively consider temporal dependencies of traffic patterns in different time windows and processes the spatial dynamics as well. Additionally, we integrate spatio-temporal positional encoding to manage spatiotemporal heterogeneity without relying on predefined graphs. Furthermore, our innovative pre-training model uses a simple patch-wise MLP to conduct masked time series modeling, learning from long-term historical data segmented into patches to generate enriched contextual representations. This approach enhances the downstream forecasting model without incurring significant time consumption or computational resource demands owing to improved learning efficiency and data handling flexibility. Our framework achieves comparable state-of-the-art performance while maintaining high computational efficiency, as verified by extensive experiments on large-scale traffic datasets.
EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems
Chen, Xianda, Han, Xu, Zhu, Meixin, Chu, Xiaowen, Tiu, PakHin, Zheng, Xinhu, Wang, Yinhai
In the realm of driving technologies, fully autonomous vehicles have not been widely adopted yet, making advanced driver assistance systems (ADAS) crucial for enhancing driving experiences. Adaptive Cruise Control (ACC) emerges as a pivotal component of ADAS. However, current ACC systems often employ fixed settings, failing to intuitively capture drivers' social preferences and leading to potential function disengagement. To overcome these limitations, we propose the Editable Behavior Generation (EBG) model, a data-driven car-following model that allows for adjusting driving discourtesy levels. The framework integrates diverse courtesy calculation methods into long short-term memory (LSTM) and Transformer architectures, offering a comprehensive approach to capture nuanced driving dynamics. By integrating various discourtesy values during the training process, our model generates realistic agent trajectories with different levels of courtesy in car-following behavior. Experimental results on the HighD and Waymo datasets showcase a reduction in Mean Squared Error (MSE) of spacing and MSE of speed compared to baselines, establishing style controllability. To the best of our knowledge, this work represents the first data-driven car-following model capable of dynamically adjusting discourtesy levels. Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
MetaFollower: Adaptable Personalized Autonomous Car Following
Chen, Xianda, Chen, Kehua, Zhu, Meixin, Hao, null, Yang, null, Shen, Shaojie, Wang, Xuesong, Wang, Yinhai
Car-following (CF) modeling, a fundamental component in microscopic traffic simulation, has attracted increasing interest of researchers in the past decades. In this study, we propose an adaptable personalized car-following framework -MetaFollower, by leveraging the power of meta-learning. Specifically, we first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events. Afterward, the pre-trained model can be fine-tuned on new drivers with only a few CF trajectories to achieve personalized CF adaptation. We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability. Unlike conventional adaptive cruise control (ACC) systems that rely on predefined settings and constant parameters without considering heterogeneous driving characteristics, MetaFollower can accurately capture and simulate the intricate dynamics of car-following behavior while considering the unique driving styles of individual drivers. We demonstrate the versatility and adaptability of MetaFollower by showcasing its ability to adapt to new drivers with limited training data quickly. To evaluate the performance of MetaFollower, we conduct rigorous experiments comparing it with both data-driven and physics-based models. The results reveal that our proposed framework outperforms baseline models in predicting car-following behavior with higher accuracy and safety. To the best of our knowledge, this is the first car-following model aiming to achieve fast adaptation by considering both driver and temporal heterogeneity based on meta-learning.
Traffic Performance GPT (TP-GPT): Real-Time Data Informed Intelligent ChatBot for Transportation Surveillance and Management
Wang, Bingzhang, Cai, Zhiyu, Karim, Muhammad Monjurul, Liu, Chenxi, Wang, Yinhai
The digitization of traffic sensing infrastructure has significantly accumulated an extensive traffic data warehouse, which presents unprecedented challenges for transportation analytics. The complexities associated with querying large-scale multi-table databases require specialized programming expertise and labor-intensive development. Additionally, traditional analysis methods have focused mainly on numerical data, often neglecting the semantic aspects that could enhance interpretability and understanding. Furthermore, real-time traffic data access is typically limited due to privacy concerns. To bridge this gap, the integration of Large Language Models (LLMs) into the domain of traffic management presents a transformative approach to addressing the complexities and challenges inherent in modern transportation systems. This paper proposes an intelligent online chatbot, TP-GPT, for efficient customized transportation surveillance and management empowered by a large real-time traffic database. The innovative framework leverages contextual and generative intelligence of language models to generate accurate SQL queries and natural language interpretations by employing transportation-specialized prompts, Chain-of-Thought prompting, few-shot learning, multi-agent collaboration strategy, and chat memory. Experimental study demonstrates that our approach outperforms state-of-the-art baselines such as GPT-4 and PaLM 2 on a challenging traffic-analysis benchmark TransQuery. TP-GPT would aid researchers and practitioners in real-time transportation surveillance and management in a privacy-preserving, equitable, and customizable manner.
LC-LLM: Explainable Lane-Change Intention and Trajectory Predictions with Large Language Models
Peng, Mingxing, Guo, Xusen, Chen, Xianda, Zhu, Meixin, Chen, Kehua, Hao, null, Yang, null, Wang, Xuesong, Wang, Yinhai
To ensure safe driving in dynamic environments, autonomous vehicles should possess the capability to accurately predict the lane change intentions of surrounding vehicles in advance and forecast their future trajectories. Existing motion prediction approaches have ample room for improvement, particularly in terms of long-term prediction accuracy and interpretability. In this paper, we address these challenges by proposing LC-LLM, an explainable lane change prediction model that leverages the strong reasoning capabilities and self-explanation abilities of Large Language Models (LLMs). Essentially, we reformulate the lane change prediction task as a language modeling problem, processing heterogeneous driving scenario information in natural language as prompts for input into the LLM and employing a supervised fine-tuning technique to tailor the LLM specifically for our lane change prediction task. This allows us to utilize the LLM's powerful common sense reasoning abilities to understand complex interactive information, thereby improving the accuracy of long-term predictions. Furthermore, we incorporate explanatory requirements into the prompts in the inference stage. Therefore, our LC-LLM model not only can predict lane change intentions and trajectories but also provides explanations for its predictions, enhancing the interpretability. Extensive experiments on the large-scale highD dataset demonstrate the superior performance and interpretability of our LC-LLM in lane change prediction task. To the best of our knowledge, this is the first attempt to utilize LLMs for predicting lane change behavior. Our study shows that LLMs can encode comprehensive interaction information for driving behavior understanding.
AccidentGPT: Accident Analysis and Prevention from V2X Environmental Perception with Multi-modal Large Model
Wang, Lening, Ren, Yilong, Jiang, Han, Cai, Pinlong, Fu, Daocheng, Wang, Tianqi, Cui, Zhiyong, Yu, Haiyang, Wang, Xuesong, Zhou, Hanchu, Huang, Helai, Wang, Yinhai
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies. Project page: https://accidentgpt.github.io
Data-driven Traffic Simulation: A Comprehensive Review
Chen, Di, Zhu, Meixin, Yang, Hao, Wang, Xuesong, Wang, Yinhai
Autonomous vehicles (AVs) have the potential to significantly revolutionize society by providing a secure and efficient mode of transportation. Recent years have witnessed notable advancements in autonomous driving perception and prediction, but the challenge of validating the performance of AVs remains largely unresolved. Data-driven microscopic traffic simulation has become an important tool for autonomous driving testing due to 1) availability of high-fidelity traffic data; 2) its advantages of enabling large-scale testing and scenario reproducibility; and 3) its potential in reactive and realistic traffic simulation. However, a comprehensive review of this topic is currently lacking. This paper aims to fill this gap by summarizing relevant studies. The primary objective of this paper is to review current research efforts and provide a futuristic perspective that will benefit future developments in the field. It introduces the general issues of data-driven traffic simulation and outlines key concepts and terms. After overviewing traffic simulation, various datasets and evaluation metrics commonly used are reviewed. The paper then offers a comprehensive evaluation of imitation learning, reinforcement learning, deep generative and deep learning methods, summarizing each and analyzing their advantages and disadvantages in detail. Moreover, it evaluates the state-of-the-art, existing challenges, and future research directions.
BEVGPT: Generative Pre-trained Large Model for Autonomous Driving Prediction, Decision-Making, and Planning
Wang, Pengqin, Zhu, Meixin, Lu, Hongliang, Zhong, Hui, Chen, Xianda, Shen, Shaojie, Wang, Xuesong, Wang, Yinhai
Prediction, decision-making, and motion planning are essential for autonomous driving. In most contemporary works, they are considered as individual modules or combined into a multi-task learning paradigm with a shared backbone but separate task heads. However, we argue that they should be integrated into a comprehensive framework. Although several recent approaches follow this scheme, they suffer from complicated input representations and redundant framework designs. More importantly, they can not make long-term predictions about future driving scenarios. To address these issues, we rethink the necessity of each module in an autonomous driving task and incorporate only the required modules into a minimalist autonomous driving framework. We propose BEVGPT, a generative pre-trained large model that integrates driving scenario prediction, decision-making, and motion planning. The model takes the bird's-eye-view (BEV) images as the only input source and makes driving decisions based on surrounding traffic scenarios. To ensure driving trajectory feasibility and smoothness, we develop an optimization-based motion planning method. We instantiate BEVGPT on Lyft Level 5 Dataset and use Woven Planet L5Kit for realistic driving simulation. The effectiveness and robustness of the proposed framework are verified by the fact that it outperforms previous methods in 100% decision-making metrics and 66% motion planning metrics. Furthermore, the ability of our framework to accurately generate BEV images over the long term is demonstrated through the task of driving scenario prediction. To the best of our knowledge, this is the first generative pre-trained large model for autonomous driving prediction, decision-making, and motion planning with only BEV images as input.
CLANet: A Comprehensive Framework for Cross-Batch Cell Line Identification Using Brightfield Images
Tong, Lei, Corrigan, Adam, Kumar, Navin Rathna, Hallbrook, Kerry, Orme, Jonathan, Wang, Yinhai, Zhou, Huiyu
Cell line authentication plays a crucial role in the biomedical field, ensuring researchers work with accurately identified cells. Supervised deep learning has made remarkable strides in cell line identification by studying cell morphological features through cell imaging. However, batch effects, a significant issue stemming from the different times at which data is generated, lead to substantial shifts in the underlying data distribution, thus complicating reliable differentiation between cell lines from distinct batch cultures. To address this challenge, we introduce CLANet, a pioneering framework for cross-batch cell line identification using brightfield images, specifically designed to tackle three distinct batch effects. We propose a cell cluster-level selection method to efficiently capture cell density variations, and a self-supervised learning strategy to manage image quality variations, thus producing reliable patch representations. Additionally, we adopt multiple instance learning(MIL) for effective aggregation of instance-level features for cell line identification. Our innovative time-series segment sampling module further enhances MIL's feature-learning capabilities, mitigating biases from varying incubation times across batches. We validate CLANet using data from 32 cell lines across 93 experimental batches from the AstraZeneca Global Cell Bank. Our results show that CLANet outperforms related approaches (e.g. domain adaptation, MIL), demonstrating its effectiveness in addressing batch effects in cell line identification.
FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling
Chen, Xianda, Zhu, Meixin, Chen, Kehua, Wang, Pengqin, Lu, Hongliang, Zhong, Hui, Han, Xu, Wang, Yinhai
Car-following is a control process in which a following vehicle (FV) adjusts its acceleration to keep a safe distance from the lead vehicle (LV). Recently, there has been a booming of data-driven models that enable more accurate modeling of car-following through real-world driving datasets. Although there are several public datasets available, their formats are not always consistent, making it challenging to determine the state-of-the-art models and how well a new model performs compared to existing ones. In contrast, research fields such as image recognition and object detection have benchmark datasets like ImageNet, Microsoft COCO, and KITTI. To address this gap and promote the development of microscopic traffic flow modeling, we establish a public benchmark dataset for car-following behavior modeling. The benchmark consists of more than 80K car-following events extracted from five public driving datasets using the same criteria. These events cover diverse situations including different road types, various weather conditions, and mixed traffic flows with autonomous vehicles. Moreover, to give an overview of current progress in car-following modeling, we implemented and tested representative baseline models with the benchmark. Results show that the deep deterministic policy gradient (DDPG) based model performs competitively with a lower MSE for spacing compared to traditional intelligent driver model (IDM) and Gazis-Herman-Rothery (GHR) models, and a smaller collision rate compared to fully connected neural network (NN) and long short-term memory (LSTM) models in most datasets. The established benchmark will provide researchers with consistent data formats and metrics for cross-comparing different car-following models, promoting the development of more accurate models. We open-source our dataset and implementation code in https://github.com/HKUST-DRIVE-AI-LAB/FollowNet.