Wang, Yingchun
A Mousetrap: Fooling Large Reasoning Models for Jailbreak with Chain of Iterative Chaos
Yao, Yang, Tong, Xuan, Wang, Ruofan, Wang, Yixu, Li, Lujundong, Liu, Liang, Teng, Yan, Wang, Yingchun
Large Reasoning Models (LRMs) have significantly advanced beyond traditional Large Language Models (LLMs) with their exceptional logical reasoning capabilities, yet these improvements introduce heightened safety risks. When subjected to jailbreak attacks, their ability to generate more targeted and organized content can lead to greater harm. Although some studies claim that reasoning enables safer LRMs against existing LLM attacks, they overlook the inherent flaws within the reasoning process itself. To address this gap, we propose the first jailbreak attack targeting LRMs, exploiting their unique vulnerabilities stemming from the advanced reasoning capabilities. Specifically, we introduce a Chaos Machine, a novel component to transform attack prompts with diverse one-to-one mappings. The chaos mappings iteratively generated by the machine are embedded into the reasoning chain, which strengthens the variability and complexity and also promotes a more robust attack. Based on this, we construct the Mousetrap framework, which makes attacks projected into nonlinear-like low sample spaces with mismatched generalization enhanced. Also, due to the more competing objectives, LRMs gradually maintain the inertia of unpredictable iterative reasoning and fall into our trap. Success rates of the Mousetrap attacking o1-mini, claude-sonnet and gemini-thinking are as high as 96%, 86% and 98% respectively on our toxic dataset Trotter. On benchmarks such as AdvBench, StrongREJECT, and HarmBench, attacking claude-sonnet, well-known for its safety, Mousetrap can astonishingly achieve success rates of 87.5%, 86.58% and 93.13% respectively. Attention: This paper contains inappropriate, offensive and harmful content.
Towards AI-$45^{\circ}$ Law: A Roadmap to Trustworthy AGI
Yang, Chao, Lu, Chaochao, Wang, Yingchun, Zhou, Bowen
Ensuring Artificial General Intelligence (AGI) reliably avoids harmful behaviors is a critical challenge, especially for systems with high autonomy or in safety-critical domains. Despite various safety assurance proposals and extreme risk warnings, comprehensive guidelines balancing AI safety and capability remain lacking. In this position paper, we propose the \textit{AI-\textbf{$45^{\circ}$} Law} as a guiding principle for a balanced roadmap toward trustworthy AGI, and introduce the \textit{Causal Ladder of Trustworthy AGI} as a practical framework. This framework provides a systematic taxonomy and hierarchical structure for current AI capability and safety research, inspired by Judea Pearl's ``Ladder of Causation''. The Causal Ladder comprises three core layers: the Approximate Alignment Layer, the Intervenable Layer, and the Reflectable Layer. These layers address the key challenges of safety and trustworthiness in AGI and contemporary AI systems. Building upon this framework, we define five levels of trustworthy AGI: perception, reasoning, decision-making, autonomy, and collaboration trustworthiness. These levels represent distinct yet progressive aspects of trustworthy AGI. Finally, we present a series of potential governance measures to support the development of trustworthy AGI.
Reflection-Bench: probing AI intelligence with reflection
Li, Lingyu, Wang, Yixu, Zhao, Haiquan, Kong, Shuqi, Teng, Yan, Li, Chunbo, Wang, Yingchun
The ability to adapt beliefs or behaviors in response to unexpected outcomes, reflection, is fundamental to intelligent systems' interaction with the world. From a cognitive science perspective, this serves as a core principle of intelligence applicable to both human and AI systems. To address the debate on the intelligence of large language models (LLMs), we propose Reflection-Bench, a comprehensive benchmark comprising 7 tasks spanning Figure 1: Reflection, a fundamental process of intelligence, core cognitive functions crucial for reflection, integrates various cognitive components. To including perception, memory, belief updating, achieve desired outcomes, an intelligent agent must decision-making, prediction, counterfactual predict the external world states and behavioral consequences thinking, and meta-reflection. We evaluate based on prior beliefs. Post-action, discrepancies the performances of 13 prominent LLMs between prediction and observation are perceived, such as OpenAI o1, GPT-4, Claude 3.5 Sonnet, prompting an update of prior belief.
Building Intelligence Identification System via Large Language Model Watermarking: A Survey and Beyond
Wang, Xuhong, Jiang, Haoyu, Yu, Yi, Yu, Jingru, Lin, Yilun, Yi, Ping, Wang, Yingchun, Yu, Qiao, Li, Li, Wang, Fei-Yue
Large Language Models (LLMs) are increasingly integrated into diverse industries, posing substantial security risks due to unauthorized replication and misuse. To mitigate these concerns, robust identification mechanisms are widely acknowledged as an effective strategy. Identification systems for LLMs now rely heavily on watermarking technology to manage and protect intellectual property and ensure data security. However, previous studies have primarily concentrated on the basic principles of algorithms and lacked a comprehensive analysis of watermarking theory and practice from the perspective of intelligent identification. To bridge this gap, firstly, we explore how a robust identity recognition system can be effectively implemented and managed within LLMs by various participants using watermarking technology. Secondly, we propose a mathematical framework based on mutual information theory, which systematizes the identification process to achieve more precise and customized watermarking. Additionally, we present a comprehensive evaluation of performance metrics for LLM watermarking, reflecting participant preferences and advancing discussions on its identification applications. Lastly, we outline the existing challenges in current watermarking technologies and theoretical frameworks, and provide directional guidance to address these challenges. Our systematic classification and detailed exposition aim to enhance the comparison and evaluation of various methods, fostering further research and development toward a transparent, secure, and equitable LLM ecosystem.
ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models
Zhao, Haiquan, Li, Lingyu, Chen, Shisong, Kong, Shuqi, Wang, Jiaan, Huang, Kexin, Gu, Tianle, Wang, Yixu, Liang, Dandan, Li, Zhixu, Teng, Yan, Xiao, Yanghua, Wang, Yingchun
Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. Inspired by the awesome development of role-playing agents, we propose an ESC Evaluation framework (ESC-Eval), which uses a role-playing agent to interact with ESC models, followed by a manual evaluation of the interactive dialogues. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (ChatGPT) and ESC-oriented LLMs (ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4. Our data and code are available at https://github.com/haidequanbu/ESC-Eval.
MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models
Gu, Tianle, Zhou, Zeyang, Huang, Kexin, Liang, Dandan, Wang, Yixu, Zhao, Haiquan, Yao, Yuanqi, Qiao, Xingge, Wang, Keqing, Yang, Yujiu, Teng, Yan, Qiao, Yu, Wang, Yingchun
Powered by remarkable advancements in Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities in manifold tasks. However, the practical application scenarios of MLLMs are intricate, exposing them to potential malicious instructions and thereby posing safety risks. While current benchmarks do incorporate certain safety considerations, they often lack comprehensive coverage and fail to exhibit the necessary rigor and robustness. For instance, the common practice of employing GPT-4V as both the evaluator and a model to be evaluated lacks credibility, as it tends to exhibit a bias toward its own responses. In this paper, we present MLLMGuard, a multidimensional safety evaluation suite for MLLMs, including a bilingual image-text evaluation dataset, inference utilities, and a lightweight evaluator. MLLMGuard's assessment comprehensively covers two languages (English and Chinese) and five important safety dimensions (Privacy, Bias, Toxicity, Truthfulness, and Legality), each with corresponding rich subtasks. Focusing on these dimensions, our evaluation dataset is primarily sourced from platforms such as social media, and it integrates text-based and image-based red teaming techniques with meticulous annotation by human experts. This can prevent inaccurate evaluation caused by data leakage when using open-source datasets and ensures the quality and challenging nature of our benchmark. Additionally, a fully automated lightweight evaluator termed GuardRank is developed, which achieves significantly higher evaluation accuracy than GPT-4. Our evaluation results across 13 advanced models indicate that MLLMs still have a substantial journey ahead before they can be considered safe and responsible.
Fake Alignment: Are LLMs Really Aligned Well?
Wang, Yixu, Teng, Yan, Huang, Kexin, Lyu, Chengqi, Zhang, Songyang, Zhang, Wenwei, Ma, Xingjun, Jiang, Yu-Gang, Qiao, Yu, Wang, Yingchun
The growing awareness of safety concerns in large language models (LLMs) has sparked considerable interest in the evaluation of safety within current research endeavors. This study investigates an interesting issue pertaining to the evaluation of LLMs, namely the substantial discrepancy in performance between multiple-choice questions and open-ended questions. Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization. That is, the LLM does not have a comprehensive understanding of the complex concept of safety. Instead, it only remembers what to answer for open-ended safety questions, which makes it unable to solve other forms of safety tests. We refer to this phenomenon as fake alignment and construct a comparative benchmark to empirically verify its existence in LLMs. Such fake alignment renders previous evaluation protocols unreliable. To address this, we introduce the Fake alIgNment Evaluation (FINE) framework and two novel metrics--Consistency Score (CS) and Consistent Safety Score (CSS), which jointly assess two complementary forms of evaluation to quantify fake alignment and obtain corrected performance estimates. Applying FINE to 14 widely-used LLMs reveals several models with purported safety are poorly aligned in practice. Our work highlights potential limitations in prevailing alignment methodologies.
Flames: Benchmarking Value Alignment of Chinese Large Language Models
Huang, Kexin, Liu, Xiangyang, Guo, Qianyu, Sun, Tianxiang, Sun, Jiawei, Wang, Yaru, Zhou, Zeyang, Wang, Yixu, Teng, Yan, Qiu, Xipeng, Wang, Yingchun, Lin, Dahua
The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and 'topping the chart' in these evaluations, there is still a significant gap in LLMs' deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes the first highly adversarial benchmark named Flames, consisting of 2,251 manually crafted prompts, ~18.7K model responses with fine-grained annotations, and a specified scorer. Our framework encompasses both common harmlessness principles, such as fairness, safety, legality, and data protection, and a unique morality dimension that integrates specific Chinese values such as harmony. Based on the framework, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting mainstream LLMs with such adversarially constructed prompts, we obtain model responses, which are then rigorously annotated for evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. Claude emerges as the best-performing model overall, but with its harmless rate being only 63.08% while GPT-4 only scores 39.04%. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. To efficiently evaluate new models on the benchmark, we develop a specified scorer capable of scoring LLMs across multiple dimensions, achieving an accuracy of 77.4%. The Flames Benchmark is publicly available on https://github.com/AIFlames/Flames.
SFP: Spurious Feature-targeted Pruning for Out-of-Distribution Generalization
Wang, Yingchun, Guo, Jingcai, Liu, Yi, Guo, Song, Zhang, Weizhan, Cao, Xiangyong, Zheng, Qinghua
Model substructure learning aims to find an invariant network substructure that can have better out-of-distribution (OOD) generalization than the original full structure. Existing works usually search the invariant substructure using modular risk minimization (MRM) with fully exposed out-domain data, which may bring about two drawbacks: 1) Unfairness, due to the dependence of the full exposure of out-domain data; and 2) Sub-optimal OOD generalization, due to the equally feature-untargeted pruning on the whole data distribution. Based on the idea that in-distribution (ID) data with spurious features may have a lower experience risk, in this paper, we propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures without referring to the above drawbacks. Specifically, SFP identifies spurious features within ID instances during training using our theoretically verified task loss, upon which, SFP attenuates the corresponding feature projections in model space to achieve the so-called spurious feature-targeted pruning. This is typically done by removing network branches with strong dependencies on identified spurious features, thus SFP can push the model learning toward invariant features and pull that out of spurious features and devise optimal OOD generalization. Moreover, we also conduct detailed theoretical analysis to provide the rationality guarantee and a proof framework for OOD structures via model sparsity, and for the first time, reveal how a highly biased data distribution affects the model's OOD generalization. Experiments on various OOD datasets show that SFP can significantly outperform both structure-based and non-structure-based OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively
Towards Fairer and More Efficient Federated Learning via Multidimensional Personalized Edge Models
Wang, Yingchun, Guo, Jingcai, Zhang, Jie, Guo, Song, Zhang, Weizhan, Zheng, Qinghua
Federated learning (FL) is an emerging technique that trains massive and geographically distributed edge data while maintaining privacy. However, FL has inherent challenges in terms of fairness and computational efficiency due to the rising heterogeneity of edges, and thus usually results in sub-optimal performance in recent state-of-the-art (SOTA) solutions. In this paper, we propose a Customized Federated Learning (CFL) system to eliminate FL heterogeneity from multiple dimensions. Specifically, CFL tailors personalized models from the specially designed global model for each client jointly guided by an online trained model-search helper and a novel aggregation algorithm. Extensive experiments demonstrate that CFL has full-stack advantages for both FL training and edge reasoning and significantly improves the SOTA performance w.r.t. model accuracy (up to 7.2% in the non-heterogeneous environment and up to 21.8% in the heterogeneous environment), efficiency, and FL fairness.