Goto

Collaborating Authors

 Wang, Yimu


Mitigating the Modality Gap: Few-Shot Out-of-Distribution Detection with Multi-modal Prototypes and Image Bias Estimation

arXiv.org Artificial Intelligence

Existing vision-language model (VLM)-based methods for out-of-distribution (OOD) detection typically rely on similarity scores between input images and in-distribution (ID) text prototypes. However, the modality gap between image and text often results in high false positive rates, as OOD samples can exhibit high similarity to ID text prototypes. To mitigate the impact of this modality gap, we propose incorporating ID image prototypes along with ID text prototypes. We present theoretical analysis and empirical evidence indicating that this approach enhances VLM-based OOD detection performance without any additional training. To further reduce the gap between image and text, we introduce a novel few-shot tuning framework, SUPREME, comprising biased prompts generation (BPG) and image-text consistency (ITC) modules. BPG enhances image-text fusion and improves generalization by conditioning ID text prototypes on the Gaussian-based estimated image domain bias; ITC reduces the modality gap by minimizing intra- and inter-modal distances. Moreover, inspired by our theoretical and empirical findings, we introduce a novel OOD score $S_{\textit{GMP}}$, leveraging uni- and cross-modal similarities. Finally, we present extensive experiments to demonstrate that SUPREME consistently outperforms existing VLM-based OOD detection methods.


Do spectral cues matter in contrast-based graph self-supervised learning?

arXiv.org Artificial Intelligence

The recent surge in contrast-based graph self-supervised learning has prominently featured an intensified exploration of spectral cues. However, an intriguing paradox emerges, as methods grounded in seemingly conflicting assumptions or heuristic approaches regarding the spectral domain demonstrate notable enhancements in learning performance. This paradox prompts a critical inquiry into the genuine contribution of spectral information to contrast-based graph self-supervised learning. This study undertakes an extensive investigation into this inquiry, conducting a thorough study of the relationship between spectral characteristics and the learning outcomes of contemporary methodologies. Based on this analysis, we claim that the effectiveness and significance of spectral information need to be questioned. Instead, we revisit simple edge perturbation: random edge dropping designed for node-level self-supervised learning and random edge adding intended for graph-level self-supervised learning. Compelling evidence is presented that these simple yet effective strategies consistently yield superior performance while demanding significantly fewer computational resources compared to all prior spectral augmentation methods. The proposed insights represent a significant leap forward in the field, potentially reshaping the understanding and implementation of graph self-supervised learning.


HaVTR: Improving Video-Text Retrieval Through Augmentation Using Large Foundation Models

arXiv.org Artificial Intelligence

While recent progress in video-text retrieval has been driven by the exploration of powerful model architectures and training strategies, the representation learning ability of video-text retrieval models is still limited due to low-quality and scarce training data annotations. To address this issue, we present a novel video-text learning paradigm, HaVTR, which augments video and text data to learn more generalized features. Specifically, we first adopt a simple augmentation method, which generates self-similar data by randomly duplicating or dropping subwords and frames. In addition, inspired by the recent advancement in visual and language generative models, we propose a more powerful augmentation method through textual paraphrasing and video stylization using large language models (LLMs) and visual generative models (VGMs). Further, to bring richer information into video and text, we propose a hallucination-based augmentation method, where we use LLMs and VGMs to generate and add new relevant information to the original data. Benefiting from the enriched data, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of HaVTR over existing methods.


Pretext Training Algorithms for Event Sequence Data

arXiv.org Artificial Intelligence

Pretext training followed by task-specific fine-tuning has been a successful approach in vision and language domains. This paper proposes a self-supervised pretext training framework tailored to event sequence data. We introduce a novel alignment verification task that is specialized to event sequences, building on good practices in masked reconstruction and contrastive learning. Our pretext tasks unlock foundational representations that are generalizable across different down-stream tasks, including next-event prediction for temporal point process models, event sequence classification, and missing event interpolation. Experiments on popular public benchmarks demonstrate the potential of the proposed method across different tasks and data domains.


Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed Rewards

arXiv.org Artificial Intelligence

This paper investigates the problem of generalized linear bandits with heavy-tailed rewards, whose $(1+\epsilon)$-th moment is bounded for some $\epsilon\in (0,1]$. Although there exist methods for generalized linear bandits, most of them focus on bounded or sub-Gaussian rewards and are not well-suited for many real-world scenarios, such as financial markets and web-advertising. To address this issue, we propose two novel algorithms based on truncation and mean of medians. These algorithms achieve an almost optimal regret bound of $\widetilde{O}(dT^{\frac{1}{1+\epsilon}})$, where $d$ is the dimension of contextual information and $T$ is the time horizon. Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches. Additionally, our mean-of-medians-based algorithm requires only $O(\log T)$ rewards and one estimator per epoch, making it more practical. Moreover, our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when $\epsilon=1$. Numerical experimental results confirm the merits of our algorithms.


Gradient-Based Word Substitution for Obstinate Adversarial Examples Generation in Language Models

arXiv.org Artificial Intelligence

In this paper, we study the problem of generating obstinate (over-stability) adversarial examples by word substitution in NLP, where input text is meaningfully changed but the model's prediction does not, even though it should. Previous word substitution approaches have predominantly focused on manually designed antonym-based strategies for generating obstinate adversarial examples, which hinders its application as these strategies can only find a subset of obstinate adversarial examples and require human efforts. To address this issue, in this paper, we introduce a novel word substitution method named GradObstinate, a gradient-based approach that automatically generates obstinate adversarial examples without any constraints on the search space or the need for manual design principles. To empirically evaluate the efficacy of GradObstinate, we conduct comprehensive experiments on five representative models (Electra, ALBERT, Roberta, DistillBERT, and CLIP) finetuned on four NLP benchmarks (SST-2, MRPC, SNLI, and SQuAD) and a language-grounding benchmark (MSCOCO). Extensive experiments show that our proposed GradObstinate generates more powerful obstinate adversarial examples, exhibiting a higher attack success rate compared to antonym-based methods. Furthermore, to show the transferability of obstinate word substitutions found by GradObstinate, we replace the words in four representative NLP benchmarks with their obstinate substitutions. Notably, obstinate substitutions exhibit a high success rate when transferred to other models in black-box settings, including even GPT-3 and ChatGPT. Examples of obstinate adversarial examples found by GradObstinate are available at https://huggingface.co/spaces/anonauthors/SecretLanguage.


Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets

arXiv.org Artificial Intelligence

Despite incredible advances, deep learning has been shown to be susceptible to adversarial attacks. Numerous approaches have been proposed to train robust networks both empirically and certifiably. However, most of them defend against only a single type of attack, while recent work takes steps forward in defending against multiple attacks. In this paper, to understand multi-target robustness, we view this problem as a bargaining game in which different players (adversaries) negotiate to reach an agreement on a joint direction of parameter updating. We identify a phenomenon named player domination in the bargaining game, namely that the existing max-based approaches, such as MAX and MSD, do not converge. Based on our theoretical analysis, we design a novel framework that adjusts the budgets of different adversaries to avoid any player dominance. Experiments on standard benchmarks show that employing the proposed framework to the existing approaches significantly advances multi-target robustness.


Multimodal Federated Learning via Contrastive Representation Ensemble

arXiv.org Artificial Intelligence

With the increasing amount of multimedia data on modern mobile systems and IoT infrastructures, harnessing these rich multimodal data without breaching user privacy becomes a critical issue. Federated learning (FL) serves as a privacy-conscious alternative to centralized machine learning. However, existing FL methods extended to multimodal data all rely on model aggregation on single modality level, which restrains the server and clients to have identical model architecture for each modality. This limits the global model in terms of both model complexity and data capacity, not to mention task diversity. In this work, we propose Contrastive Representation Ensemble and Aggregation for Multimodal FL (CreamFL), a multimodal federated learning framework that enables training larger server models from clients with heterogeneous model architectures and data modalities, while only communicating knowledge on public dataset. To achieve better multimodal representation fusion, we design a global-local cross-modal ensemble strategy to aggregate client representations. To mitigate local model drift caused by two unprecedented heterogeneous factors stemming from multimodal discrepancy (modality gap and task gap), we further propose two inter-modal and intra-modal contrasts to regularize local training, which complements information of the absent modality for uni-modal clients and regularizes local clients to head towards global consensus. Thorough evaluations and ablation studies on image-text retrieval and visual question answering tasks showcase the superiority of CreamFL over state-of-the-art FL methods and its practical value.