Wang, Yichen
Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry
Chou, Chi-Ning, Le, Hang, Wang, Yichen, Chung, SueYeon
The ability to integrate task-relevant information into neural representations is a fundamental aspect of both biological and artificial intelligence. To enable theoretical analysis, recent work has examined whether a network learns task-relevant features (rich learning) or resembles a random feature model (or a kernel machine, i.e., lazy learning). However, this simple lazy-versus-rich dichotomy overlooks the possibility of various subtypes of feature learning that emerge from different architectures, learning rules, and data properties. Furthermore, most existing approaches emphasize weight matrices or neural tangent kernels, limiting their applicability to neuroscience because they do not explicitly characterize representations. In this work, we introduce an analysis framework based on representational geometry to study feature learning. Instead of analyzing what are the learned features, we focus on characterizing how task-relevant representational manifolds evolve during the learning process. In both theory and experiment, we find that when a network learns features useful for solving a task, the task-relevant manifolds become increasingly untangled. Moreover, by tracking changes in the underlying manifold geometry, we uncover distinct learning stages throughout training, as well as different learning strategies associated with training hyperparameters, uncovering subtypes of feature learning beyond the lazy-versus-rich dichotomy. Applying our method to neuroscience and machine learning, we gain geometric insights into the structural inductive biases of neural circuits solving cognitive tasks and the mechanisms underlying out-of-distribution generalization in image classification. Our framework provides a novel geometric perspective for understanding and quantifying feature learning in both artificial and biological neural networks.
Can A Society of Generative Agents Simulate Human Behavior and Inform Public Health Policy? A Case Study on Vaccine Hesitancy
Hou, Abe Bohan, Du, Hongru, Wang, Yichen, Zhang, Jingyu, Wang, Zixiao, Liang, Paul Pu, Khashabi, Daniel, Gardner, Lauren, He, Tianxing
Can we simulate a sandbox society with generative agents to model human behavior, thereby reducing the over-reliance on real human trials for assessing public policies? In this work, we investigate the feasibility of simulating health-related decision-making, using vaccine hesitancy, defined as the delay in acceptance or refusal of vaccines despite the availability of vaccination services (MacDonald, 2015), as a case study. To this end, we introduce the VacSim framework with 100 generative agents powered by Large Language Models (LLMs). VacSim simulates vaccine policy outcomes with the following steps: 1) instantiate a population of agents with demographics based on census data; 2) connect the agents via a social network and model vaccine attitudes as a function of social dynamics and disease-related information; 3) design and evaluate various public health interventions aimed at mitigating vaccine hesitancy. To align with real-world results, we also introduce simulation warmup and attitude modulation to adjust agents' attitudes. We propose a series of evaluations to assess the reliability of various LLM simulations. Experiments indicate that models like Llama and Qwen can simulate aspects of human behavior but also highlight real-world alignment challenges, such as inconsistent responses with demographic profiles. This early exploration of LLM-driven simulations is not meant to serve as definitive policy guidance; instead, it serves as a call for action to examine social simulation for policy development.
Kinodynamic Model Predictive Control for Energy Efficient Locomotion of Legged Robots with Parallel Elasticity
Zhuang, Yulun, Wang, Yichen, Ding, Yanran
Abstract-- In this paper, we introduce a kinodynamic model predictive control (MPC) framework that exploits unidirectional parallel springs (UPS) to improve the energy efficiency of dynamic legged robots. The proposed method employs a hierarchical control structure, where the solution of MPC with simplified dynamic models is used to warm-start the kinodynamic MPC, which accounts for nonlinear centroidal dynamics and kinematic constraints. The proposed approach enables energy efficient dynamic hopping on legged robots by using UPS to reduce peak motor torques and energy consumption during stance phases. Simulation results demonstrated a 38.8% reduction in the cost of transport (CoT) for a monoped robot equipped with UPS during high-speed hopping. Additionally, preliminary hardware experiments show a 14.8% reduction in The Cost of Transport (CoT) is plotted w.r.t.
Re-examining Double Descent and Scaling Laws under Norm-based Capacity via Deterministic Equivalence
Wang, Yichen, Chen, Yudong, Rosasco, Lorenzo, Liu, Fanghui
The number of parameters, i.e., model size, provides a basic measure of the capacity of a machine learning (ML) model. However it is well known that it might not describe the effective model capacity (Bartlett, 1998), especially for over-parameterized neural networks (Belkin et al., 2018; Zhang et al., 2021) and large language models (Brown et al., 2020). The focus on the number of parameters results in an inaccurate characterization of the relationship between the test risk R, training data size n, and model size p, which is central in ML to understand the bias-variance trade-off (Vapnik, 1995), double descent (Belkin et al., 2019) and scaling laws (Kaplan et al., 2020; Xiao, 2024). For example, even for the same architecture (model size), the test error behavior can be totally different (Nakkiran et al., 2020, 2021), e.g., double descent may disappear. Here we shift the focus from model size to weights and consider their norm, a perspective pioneered in the classical results in Bartlett (1998). Indeed, norm based capacity/complexity are widely considered to be more effective in characterizing generalization behavior, see e.g.
TrojanRobot: Backdoor Attacks Against LLM-based Embodied Robots in the Physical World
Wang, Xianlong, Pan, Hewen, Zhang, Hangtao, Li, Minghui, Hu, Shengshan, Zhou, Ziqi, Xue, Lulu, Guo, Peijin, Wang, Yichen, Wan, Wei, Liu, Aishan, Zhang, Leo Yu
Robotic manipulation refers to the autonomous handling and interaction of robots with objects using advanced techniques in robotics and artificial intelligence. The advent of powerful tools such as large language models (LLMs) and large vision-language models (LVLMs) has significantly enhanced the capabilities of these robots in environmental perception and decision-making. However, the introduction of these intelligent agents has led to security threats such as jailbreak attacks and adversarial attacks. In this research, we take a further step by proposing a backdoor attack specifically targeting robotic manipulation and, for the first time, implementing backdoor attack in the physical world. By embedding a backdoor visual language model into the visual perception module within the robotic system, we successfully mislead the robotic arm's operation in the physical world, given the presence of common items as triggers. Experimental evaluations in the physical world demonstrate the effectiveness of the proposed backdoor attack.
CSP-AIT-Net: A contrastive learning-enhanced spatiotemporal graph attention framework for short-term metro OD flow prediction with asynchronous inflow tracking
Wang, Yichen, Yu, Chengcheng
Accurate origin-destination (OD) passenger flow prediction is crucial for enhancing metro system efficiency, optimizing scheduling, and improving passenger experiences. However, current models often fail to effectively capture the asynchronous departure characteristics of OD flows and underutilize the inflow and outflow data, which limits their prediction accuracy. To address these issues, we propose CSP-AIT-Net, a novel spatiotemporal graph attention framework designed to enhance OD flow prediction by incorporating asynchronous inflow tracking and advanced station semantics representation. Our framework restructures the OD flow prediction paradigm by first predicting outflows and then decomposing OD flows using a spatiotemporal graph attention mechanism. To enhance computational efficiency, we introduce a masking mechanism and propose asynchronous passenger flow graphs that integrate inflow and OD flow with conservation constraints. Furthermore, we employ contrastive learning to extract high-dimensional land use semantics of metro stations, enriching the contextual understanding of passenger mobility patterns. Validation of the Shanghai metro system demonstrates improvement in short-term OD flow prediction accuracy over state-of-the-art methods. This work contributes to enhancing metro operational efficiency, scheduling precision, and overall system safety.
Multiscale spatiotemporal heterogeneity analysis of bike-sharing system's self-loop phenomenon: Evidence from Shanghai
Wang, Yichen, Yu, Qing, Song, Yancun
Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial location's impact on the self-loop phenomenon at metro stations and street scales. The results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale and is positively associated with residential land use. Marginal treatment effects of residential land use is higher on streets with middle-aged residents, high fixed employment, and low car ownership. The multimodal public transit condition reveals significant positive marginal treatment effects at both scales. To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage, alongside implementing adaptable redistribution strategies.
SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment
Wang, Jie, Wang, Yichen, Zhang, Zhilin, Zeng, Jianhao, Wang, Kaidi, Chen, Zhiyang
With strong expressive capabilities in Large Language Models(LLMs), generative models effectively capture sentiment structures and deep semantics, however, challenges remain in fine-grained sentiment classification across multi-lingual and complex contexts. To address this, we propose the Sentiment Cross-Lingual Recognition and Logic Framework (SentiXRL), which incorporates two modules,an emotion retrieval enhancement module to improve sentiment classification accuracy in complex contexts through historical dialogue and logical reasoning,and a self-circulating analysis negotiation mechanism (SANM)to facilitates autonomous decision-making within a single model for classification tasks.We have validated SentiXRL's superiority on multiple standard datasets, outperforming existing models on CPED and CH-SIMS,and achieving overall better performance on MELD,Emorynlp and IEMOCAP. Notably, we unified labels across several fine-grained sentiment annotation datasets and conducted category confusion experiments, revealing challenges and impacts of class imbalance in standard datasets.
Perturbation Ontology based Graph Attention Networks
Wang, Yichen, Wang, Jie, Wang, Fulin, Li, Xiang, Yin, Hao, Raj, Bhiksha
In recent years, graph representation learning has undergone a paradigm shift, driven by the emergence and proliferation of graph neural networks (GNNs) and their heterogeneous counterparts. Heterogeneous GNNs have shown remarkable success in extracting low-dimensional embeddings from complex graphs that encompass diverse entity types and relationships. While meta-path-based techniques have long been recognized for their ability to capture semantic affinities among nodes, their dependence on manual specification poses a significant limitation. In contrast, matrix-focused methods accelerate processing by utilizing structural cues but often overlook contextual richness. In this paper, we challenge the current paradigm by introducing ontology as a fundamental semantic primitive within complex graphs. Our goal is to integrate the strengths of both matrix-centric and meta-path-based approaches into a unified framework. We propose perturbation Ontology-based Graph Attention Networks (POGAT), a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding. The core innovation of POGAT lies in our enhanced homogeneous perturbing scheme designed to generate rigorous negative samples, encouraging the model to explore minimal contextual features more thoroughly. Through extensive empirical evaluations, we demonstrate that POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78\% in F1-score for the critical task of link prediction and 12.01\% in Micro-F1 for the critical task of node classification.
Navigating Spatial Inequities in Freight Truck Crash Severity via Counterfactual Inference in Los Angeles
Wang, Yichen, Yin, Hao, Yang, Yifan, Zhao, Chenyang, Wang, Siqin
Freight truck-related crashes pose significant challenges, leading to substantial economic losses, injuries, and fatalities, with pronounced spatial disparities across different regions. This study adopts a transport geography perspective to examine spatial justice concerns by employing deep counterfactual inference models to analyze how socioeconomic disparities, road infrastructure, and environmental conditions influence the geographical distribution and severity of freight truck crashes. By integrating road network datasets, socioeconomic attributes, and crash records from the Los Angeles metropolitan area, this research provides a nuanced spatial analysis of how different communities are disproportionately impacted. The results reveal significant spatial disparities in crash severity across areas with varying population densities, income levels, and minority populations, highlighting the pivotal role of infrastructural and environmental improvements in mitigating these disparities. The findings offer insights into targeted, location-specific policy interventions, suggesting enhancements in road infrastructure, lighting, and traffic control systems, particularly in low-income and minority-concentrated areas. This research contributes to the literature on transport geography and spatial equity by providing data-driven insights into effective measures for reducing spatial injustices associated with freight truck-related crashes.