Goto

Collaborating Authors

 Wang, Yichao


Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.


LLM4MSR: An LLM-Enhanced Paradigm for Multi-Scenario Recommendation

arXiv.org Artificial Intelligence

As the demand for more personalized recommendation grows and a dramatic boom in commercial scenarios arises, the study on multi-scenario recommendation (MSR) has attracted much attention, which uses the data from all scenarios to simultaneously improve their recommendation performance. However, existing methods tend to integrate insufficient scenario knowledge and neglect learning personalized cross-scenario preferences, thus leading to suboptimal performance and inadequate interpretability. Meanwhile, though large language model (LLM) has shown great capability of reasoning and capturing semantic information, the high inference latency and high computation cost of tuning hinder its implementation in industrial recommender systems. To fill these gaps, we propose an effective efficient interpretable LLM-enhanced paradigm LLM4MSR in this work. Specifically, we first leverage LLM to uncover multi-level knowledge including scenario correlations and users' cross-scenario interests from the designed scenario- and user-level prompt without fine-tuning the LLM, then adopt hierarchical meta networks to generate multi-level meta layers to explicitly improves the scenario-aware and personalized recommendation capability. Our experiments on KuaiSAR-small, KuaiSAR, and Amazon datasets validate two significant advantages of LLM4MSR: (i) the effectiveness and compatibility with different multi-scenario backbone models (achieving 1.5%, 1%, and 40% AUC improvement on three datasets), (ii) high efficiency and deployability on industrial recommender systems, and (iii) improved interpretability. The implemented code and data is available to ease reproduction.


Optimal Transport for Treatment Effect Estimation

arXiv.org Machine Learning

Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias. Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space. However, there are two critical problems that these methods fail to address: (1) mini-batch sampling effects (MSE), which causes misalignment in non-ideal mini-batches with outcome imbalance and outliers; (2) unobserved confounder effects (UCE), which results in inaccurate discrepancy calculation due to the neglect of unobserved confounders. To tackle these problems, we propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality. Specifically, based on the framework of stochastic optimal transport, we propose a relaxed mass-preserving regularizer to address the MSE issue and design a proximal factual outcome regularizer to handle the UCE issue. Extensive experiments demonstrate that our proposed ESCFR can successfully tackle the treatment selection bias and achieve significantly better performance than state-of-the-art methods.