Wang, Yaonan
Multi-Keypoint Affordance Representation for Functional Dexterous Grasping
Yang, Fan, Luo, Dongsheng, Chen, Wenrui, Lin, Jiacheng, Cai, Junjie, Yang, Kailun, Li, Zhiyong, Wang, Yaonan
Functional dexterous grasping requires precise hand-object interaction, going beyond simple gripping. Existing affordance-based methods primarily predict coarse interaction regions and cannot directly constrain the grasping posture, leading to a disconnection between visual perception and manipulation. To address this issue, we propose a multi-keypoint affordance representation for functional dexterous grasping, which directly encodes task-driven grasp configurations by localizing functional contact points. Our method introduces Contact-guided Multi-Keypoint Affordance (CMKA), leveraging human grasping experience images for weak supervision combined with Large Vision Models for fine affordance feature extraction, achieving generalization while avoiding manual keypoint annotations. Additionally, we present a Keypoint-based Grasp matrix Transformation (KGT) method, ensuring spatial consistency between hand keypoints and object contact points, thus providing a direct link between visual perception and dexterous grasping actions. Experiments on public real-world FAH datasets, IsaacGym simulation, and challenging robotic tasks demonstrate that our method significantly improves affordance localization accuracy, grasp consistency, and generalization to unseen tools and tasks, bridging the gap between visual affordance learning and dexterous robotic manipulation. The source code and demo videos will be publicly available at https://github.com/PopeyePxx/MKA.
RSMLP: A light Sampled MLP Structure for Incomplete Utterance Rewrite
Liu, Lunjun, Jiang, Weilai, Wang, Yaonan
The Incomplete Utterance Rewriting (IUR) task has garnered significant attention in recent years. Its goal is to reconstruct conversational utterances to better align with the current context, thereby enhancing comprehension. In this paper, we introduce a novel and versatile lightweight method, Rewritten-Sampled MLP (RSMLP). By employing an MLP based architecture with a carefully designed down-sampling strategy, RSMLP effectively extracts latent semantic information between utterances and makes appropriate edits to restore incomplete utterances. Due to its simple yet efficient structure, our method achieves competitive performance on public IUR datasets and in real-world applications.
Modality Unified Attack for Omni-Modality Person Re-Identification
Bian, Yuan, Liu, Min, Yi, Yunqi, Wang, Xueping, Ma, Yunfeng, Wang, Yaonan
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning
Liu, Lunjun, Jiang, Weilai, Wang, Yaonan
In multi-agent reinforcement learning (MARL), the centralized training with decentralized execution (CTDE) framework has gained widespread adoption due to its strong performance. However, the further development of CTDE faces two key challenges. First, agents struggle to autonomously assess the relevance of input information for cooperative tasks, impairing their decision-making abilities. Second, in communication-limited scenarios with partial observability, agents are unable to access global information, restricting their ability to collaborate effectively from a global perspective. To address these challenges, we introduce a novel cooperative MARL framework based on information selection and tacit learning. In this framework, agents gradually develop implicit coordination during training, enabling them to infer the cooperative behavior of others in a discrete space without communication, relying solely on local information. Moreover, we integrate gating and selection mechanisms, allowing agents to adaptively filter information based on environmental changes, thereby enhancing their decision-making capabilities. Experiments on popular MARL benchmarks show that our framework can be seamlessly integrated with state-of-the-art algorithms, leading to significant performance improvements.
EADReg: Probabilistic Correspondence Generation with Efficient Autoregressive Diffusion Model for Outdoor Point Cloud Registration
Gong, Linrui, Liu, Jiuming, Ma, Junyi, Liu, Lihao, Wang, Yaonan, Wang, Hesheng
Diffusion models have shown the great potential in the point cloud registration (PCR) task, especially for enhancing the robustness to challenging cases. However, existing diffusion-based PCR methods primarily focus on instance-level scenarios and struggle with outdoor LiDAR points, where the sparsity, irregularity, and huge point scale inherent in LiDAR points pose challenges to establishing dense global point-to-point correspondences. To address this issue, we propose a novel framework named EADReg for efficient and robust registration of LiDAR point clouds based on autoregressive diffusion models. EADReg follows a coarse-to-fine registration paradigm. In the coarse stage, we employ a Bi-directional Gaussian Mixture Model (BGMM) to reject outlier points and obtain purified point cloud pairs. BGMM establishes correspondences between the Gaussian Mixture Models (GMMs) from the source and target frames, enabling reliable coarse registration based on filtered features and geometric information. In the fine stage, we treat diffusion-based PCR as an autoregressive process to generate robust point correspondences, which are then iteratively refined on upper layers. Despite common criticisms of diffusion-based methods regarding inference speed, EADReg achieves runtime comparable to convolutional-based methods. Extensive experiments on the KITTI and NuScenes benchmark datasets highlight the state-of-the-art performance of our proposed method. Codes will be released upon publication.
Fidelity-Imposed Displacement Editing for the Learn2Reg 2024 SHG-BF Challenge
Wang, Jiacheng, Chen, Xiang, Hu, Renjiu, Wang, Rongguang, Liu, Min, Wang, Yaonan, Wang, Jiazheng, Li, Hao, Zhang, Hang
To address these challenges, we propose a novel SHG-BF Co-examination of second-harmonic generation (SHG) and multimodal registration method with the following key contributions: bright-field (BF) microscopy enables the differentiation of tissue components and collagen fibers, aiding the analysis of human 1. Batch-wise contrastive loss (B-NCE): We introduce a breast and pancreatic cancer tissues. However, large discrepancies batch-wise noise contrastive estimation loss to effectively between SHG and BF images pose challenges for capture shared features between SHG and BF images.
Learning Granularity-Aware Affordances from Human-Object Interaction for Tool-Based Functional Grasping in Dexterous Robotics
Yang, Fan, Chen, Wenrui, Yang, Kailun, Lin, Haoran, Luo, DongSheng, Tang, Conghui, Li, Zhiyong, Wang, Yaonan
To enable robots to use tools, the initial step is teaching robots to employ dexterous gestures for touching specific areas precisely where tasks are performed. Affordance features of objects serve as a bridge in the functional interaction between agents and objects. However, leveraging these affordance cues to help robots achieve functional tool grasping remains unresolved. To address this, we propose a granularity-aware affordance feature extraction method for locating functional affordance areas and predicting dexterous coarse gestures. We study the intrinsic mechanisms of human tool use. On one hand, we use fine-grained affordance features of object-functional finger contact areas to locate functional affordance regions. On the other hand, we use highly activated coarse-grained affordance features in hand-object interaction regions to predict grasp gestures. Additionally, we introduce a model-based post-processing module that includes functional finger coordinate localization, finger-to-end coordinate transformation, and force feedback-based coarse-to-fine grasping. This forms a complete dexterous robotic functional grasping framework GAAF-Dex, which learns Granularity-Aware Affordances from human-object interaction for tool-based Functional grasping in Dexterous Robotics. Unlike fully-supervised methods that require extensive data annotation, we employ a weakly supervised approach to extract relevant cues from exocentric (Exo) images of hand-object interactions to supervise feature extraction in egocentric (Ego) images. We have constructed a small-scale dataset, FAH, which includes near 6K images of functional hand-object interaction Exo- and Ego images of 18 commonly used tools performing 6 tasks. Extensive experiments on the dataset demonstrate our method outperforms state-of-the-art methods. The code will be made publicly available at https://github.com/yangfan293/GAAF-DEX.
Quantum Adjoint Convolutional Layers for Effective Data Representation
Zhao, Ren-Xin, Wang, Shi, Wang, Yaonan
Quantum Convolutional Layer (QCL) is considered as one of the core of Quantum Convolutional Neural Networks (QCNNs) due to its efficient data feature extraction capability. However, the current principle of QCL is not as mathematically understandable as Classical Convolutional Layer (CCL) due to its black-box structure. Moreover, classical data mapping in many QCLs is inefficient. To this end, firstly, the Quantum Adjoint Convolution Operation (QACO) consisting of a quantum amplitude encoding and its inverse is theoretically shown to be equivalent to the quantum normalization of the convolution operation based on the Frobenius inner product while achieving an efficient characterization of the data. Subsequently, QACO is extended into a Quantum Adjoint Convolutional Layer (QACL) by Quantum Phase Estimation (QPE) to compute all Frobenius inner products in parallel. At last, comparative simulation experiments are carried out on PennyLane and TensorFlow platforms, mainly for the two cases of kernel fixed and unfixed in QACL. The results demonstrate that QACL with the insight of special quantum properties for the same images, provides higher training accuracy in MNIST and Fashion MNIST classification experiments, but sacrifices the learning performance to some extent. Predictably, our research lays the foundation for the development of efficient and interpretable quantum convolutional networks and also advances the field of quantum machine vision.
Towards Real-World Aerial Vision Guidance with Categorical 6D Pose Tracker
Sun, Jingtao, Wang, Yaonan, Wang, Danwei
Tracking the object 6-DoF pose is crucial for various downstream robot tasks and real-world applications. In this paper, we investigate the real-world robot task of aerial vision guidance for aerial robotics manipulation, utilizing category-level 6-DoF pose tracking. Aerial conditions inevitably introduce special challenges, such as rapid viewpoint changes in pitch and roll and inter-frame differences. To support these challenges in task, we firstly introduce a robust category-level 6-DoF pose tracker (Robust6DoF). This tracker leverages shape and temporal prior knowledge to explore optimal inter-frame keypoint pairs, generated under a priori structural adaptive supervision in a coarse-to-fine manner. Notably, our Robust6DoF employs a Spatial-Temporal Augmentation module to deal with the problems of the inter-frame differences and intra-class shape variations through both temporal dynamic filtering and shape-similarity filtering. We further present a Pose-Aware Discrete Servo strategy (PAD-Servo), serving as a decoupling approach to implement the final aerial vision guidance task. It contains two servo action policies to better accommodate the structural properties of aerial robotics manipulation. Exhaustive experiments on four well-known public benchmarks demonstrate the superiority of our Robust6DoF. Real-world tests directly verify that our Robust6DoF along with PAD-Servo can be readily used in real-world aerial robotic applications.
Learn Once Plan Arbitrarily (LOPA): Attention-Enhanced Deep Reinforcement Learning Method for Global Path Planning
Huang, Guoming, Hou, Mingxin, Yuan, Xiaofang, Huang, Shuqiao, Wang, Yaonan
Deep reinforcement learning (DRL) methods have recently shown promise in path planning tasks. However, when dealing with global planning tasks, these methods face serious challenges such as poor convergence and generalization. To this end, we propose an attention-enhanced DRL method called LOPA (Learn Once Plan Arbitrarily) in this paper. Firstly, we analyze the reasons of these problems from the perspective of DRL's observation, revealing that the traditional design causes DRL to be interfered by irrelevant map information. Secondly, we develop the LOPA which utilizes a novel attention-enhanced mechanism to attain an improved attention capability towards the key information of the observation. Such a mechanism is realized by two steps: (1) an attention model is built to transform the DRL's observation into two dynamic views: local and global, significantly guiding the LOPA to focus on the key information on the given maps; (2) a dual-channel network is constructed to process these two views and integrate them to attain an improved reasoning capability. The LOPA is validated via multi-objective global path planning experiments. The result suggests the LOPA has improved convergence and generalization performance as well as great path planning efficiency.