Wang, Xue
RePO: ReLU-based Preference Optimization
Wu, Junkang, Huang, Kexin, Wang, Xue, Gao, Jinyang, Ding, Bolin, Wu, Jiancan, He, Xiangnan, Wang, Xiang
Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
Larger or Smaller Reward Margins to Select Preferences for Alignment?
Huang, Kexin, Wu, Junkang, Chen, Ziqian, Wang, Xue, Gao, Jinyang, Ding, Bolin, Wu, Jiancan, He, Xiangnan, Wang, Xiang
Preference learning is critical for aligning large language models (LLMs) with human values, with the quality of preference datasets playing a crucial role in this process. While existing metrics primarily assess data quality based on either explicit or implicit reward margins, they often provide contradictory evaluations for the same data. To address this issue, we introduce the alignment potential metric, which quantifies the gap from the model's current implicit reward margin to the target explicit reward margin, thereby estimating the model's potential to align with the preference data. Empirical results demonstrate that training on data selected by this metric consistently enhances alignment performance, surpassing existing metrics across different base models and optimization objectives. Furthermore, our method extends to self-play data generation frameworks, where the metric is used to identify high-quality data within the self-generated content by LLMs. Under this data generation scenario, our method surpasses current state-of-the-art (SOTA) results across various training settings and demonstrates continuous improvements in alignment performance as dataset size and training iterations increase.
MM-RLHF: The Next Step Forward in Multimodal LLM Alignment
Zhang, Yi-Fan, Yu, Tao, Tian, Haochen, Fu, Chaoyou, Li, Peiyan, Zeng, Jianshu, Xie, Wulin, Shi, Yang, Zhang, Huanyu, Wu, Junkang, Wang, Xue, Hu, Yibo, Wen, Bin, Yang, Fan, Zhang, Zhang, Gao, Tingting, Zhang, Di, Wang, Liang, Jin, Rong, Tan, Tieniu
Despite notable advancements in Multimodal Large Language Models (MLLMs), most state-of-the-art models have not undergone thorough alignment with human preferences. This gap exists because current alignment research has primarily achieved progress in specific areas (e.g., hallucination reduction), while the broader question of whether aligning models with human preferences can systematically enhance MLLM capability remains largely unexplored. To this end, we introduce MM-RLHF, a dataset containing $\mathbf{120k}$ fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce a Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across $\mathbf{10}$ distinct dimensions and $\mathbf{27}$ benchmarks, with results demonstrating significant and consistent improvements in model performance. Specifically, fine-tuning LLaVA-ov-7B with MM-RLHF and our alignment algorithm leads to a $\mathbf{19.5}$% increase in conversational abilities and a $\mathbf{60}$% improvement in safety. We have open-sourced the preference dataset, reward model, training and evaluation code, as well as reward modeling and safety benchmarks. For more details, please visit our project page: https://mm-rlhf.github.io.
Self-Calibrated Dual Contrasting for Annotation-Efficient Bacteria Raman Spectroscopy Clustering and Classification
Yao, Haiming, Luo, Wei, Zhou, Tao, Gao, Ang, Wang, Xue
Raman scattering is based on molecular vibration spectroscopy and provides a powerful technology for pathogenic bacteria diagnosis using the unique molecular fingerprint information of a substance. The integration of deep learning technology has significantly improved the efficiency and accuracy of intelligent Raman spectroscopy (RS) recognition. However, the current RS recognition methods based on deep neural networks still require the annotation of a large amount of spectral data, which is labor-intensive. This paper presents a novel annotation-efficient Self-Calibrated Dual Contrasting (SCDC) method for RS recognition that operates effectively with few or no annotation. Our core motivation is to represent the spectrum from two different perspectives in two distinct subspaces: embedding and category. The embedding perspective captures instance-level information, while the category perspective reflects category-level information. Accordingly, we have implemented a dual contrastive learning approach from two perspectives to obtain discriminative representations, which are applicable for Raman spectroscopy recognition under both unsupervised and semi-supervised learning conditions. Furthermore, a self-calibration mechanism is proposed to enhance robustness. Validation of the identification task on three large-scale bacterial Raman spectroscopy datasets demonstrates that our SCDC method achieves robust recognition performance with very few (5$\%$ or 10$\%$) or no annotations, highlighting the potential of the proposed method for biospectral identification in annotation-efficient clinical scenarios.
DiffRaman: A Conditional Latent Denoising Diffusion Probabilistic Model for Bacterial Raman Spectroscopy Identification Under Limited Data Conditions
Yao, Haiming, Luo, Wei, Gao, Ang, Zhou, Tao, Wang, Xue
Raman spectroscopy has attracted significant attention in various biochemical detection fields, especially in the rapid identification of pathogenic bacteria. The integration of this technology with deep learning to facilitate automated bacterial Raman spectroscopy diagnosis has emerged as a key focus in recent research. However, the diagnostic performance of existing deep learning methods largely depends on a sufficient dataset, and in scenarios where there is a limited availability of Raman spectroscopy data, it is inadequate to fully optimize the numerous parameters of deep neural networks. To address these challenges, this paper proposes a data generation method utilizing deep generative models to expand the data volume and enhance the recognition accuracy of bacterial Raman spectra. Specifically, we introduce DiffRaman, a conditional latent denoising diffusion probability model for Raman spectra generation. Experimental results demonstrate that synthetic bacterial Raman spectra generated by DiffRaman can effectively emulate real experimental spectra, thereby enhancing the performance of diagnostic models, especially under conditions of limited data. Furthermore, compared to existing generative models, the proposed DiffRaman offers improvements in both generation quality and computational efficiency. Our DiffRaman approach offers a well-suited solution for automated bacteria Raman spectroscopy diagnosis in data-scarce scenarios, offering new insights into alleviating the labor of spectroscopic measurements and enhancing rare bacteria identification.
$\alpha$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs
Wu, Junkang, Wang, Xue, Yang, Zhengyi, Wu, Jiancan, Gao, Jinyang, Ding, Bolin, Wang, Xiang, He, Xiangnan
Aligning large language models (LLMs) with human values and intentions is crucial for their utility, honesty, and safety. Reinforcement learning from human feedback (RLHF) is a popular approach to achieve this alignment, but it faces challenges in computational efficiency and training stability. Recent methods like Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO) have proposed offline alternatives to RLHF, simplifying the process by reparameterizing the reward function. However, DPO depends on a potentially suboptimal reference model, and SimPO's assumption of a fixed target reward margin may lead to suboptimal decisions in diverse data settings. In this work, we propose $\alpha$-DPO, an adaptive preference optimization algorithm designed to address these limitations by introducing a dynamic reward margin. Specifically, $\alpha$-DPO employs an adaptive preference distribution, balancing the policy model and the reference model to achieve personalized reward margins. We provide theoretical guarantees for $\alpha$-DPO, demonstrating its effectiveness as a surrogate optimization objective and its ability to balance alignment and diversity through KL divergence control. Empirical evaluations on AlpacaEval 2 and Arena-Hard show that $\alpha$-DPO consistently outperforms DPO and SimPO across various model settings, establishing it as a robust approach for fine-tuning LLMs. Our method achieves significant improvements in win rates, highlighting its potential as a powerful tool for LLM alignment. The code is available at https://github.com/junkangwu/alpha-DPO
Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt
Zhang, YiFan, Chen, Weiqi, Zhu, Zhaoyang, Qin, Dalin, Sun, Liang, Wang, Xue, Wen, Qingsong, Zhang, Zhang, Wang, Liang, Jin, Rong
Online updating of time series forecasting models aims to tackle the challenge of concept drifting by adjusting forecasting models based on streaming data. While numerous algorithms have been developed, most of them focus on model design and updating. In practice, many of these methods struggle with continuous performance regression in the face of accumulated concept drifts over time. To address this limitation, we present a novel approach, Concept \textbf{D}rift \textbf{D}etection an\textbf{D} \textbf{A}daptation (D3A), that first detects drifting conception and then aggressively adapts the current model to the drifted concepts after the detection for rapid adaption. To best harness the utility of historical data for model adaptation, we propose a data augmentation strategy introducing Gaussian noise into existing training instances. It helps mitigate the data distribution gap, a critical factor contributing to train-test performance inconsistency. The significance of our data augmentation process is verified by our theoretical analysis. Our empirical studies across six datasets demonstrate the effectiveness of D3A in improving model adaptation capability. Notably, compared to a simple Temporal Convolutional Network (TCN) baseline, D3A reduces the average Mean Squared Error (MSE) by $43.9\%$. For the state-of-the-art (SOTA) model, the MSE is reduced by $33.3\%$.
Attention as Robust Representation for Time Series Forecasting
Niu, PeiSong, Zhou, Tian, Wang, Xue, Sun, Liang, Jin, Rong
Time series forecasting is essential for many practical applications, with the adoption of transformer-based models on the rise due to their impressive performance in NLP and CV. Transformers' key feature, the attention mechanism, dynamically fusing embeddings to enhance data representation, often relegating attention weights to a byproduct role. Yet, time series data, characterized by noise and non-stationarity, poses significant forecasting challenges. Our approach elevates attention weights as the primary representation for time series, capitalizing on the temporal relationships among data points to improve forecasting accuracy. Our study shows that an attention map, structured using global landmarks and local windows, acts as a robust kernel representation for data points, withstanding noise and shifts in distribution. Our method outperforms state-of-the-art models, reducing mean squared error (MSE) in multivariate time series forecasting by a notable 3.6% without altering the core neural network architecture. It serves as a versatile component that can readily replace recent patching based embedding schemes in transformer-based models, boosting their performance.
DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation
Gao, Yuan, Chen, Haokun, Wang, Xiang, Wang, Zhicai, Wang, Xue, Gao, Jinyang, Ding, Bolin
Machine learning models have demonstrated remarkable efficacy and efficiency in a wide range of stock forecasting tasks. However, the inherent challenges of data scarcity, including low signal-to-noise ratio (SNR) and data homogeneity, pose significant obstacles to accurate forecasting. To address this issue, we propose a novel approach that utilizes artificial intelligence-generated samples (AIGS) to enhance the training procedures. In our work, we introduce the Diffusion Model to generate stock factors with Transformer architecture (DiffsFormer). DiffsFormer is initially trained on a large-scale source domain, incorporating conditional guidance so as to capture global joint distribution. When presented with a specific downstream task, we employ DiffsFormer to augment the training procedure by editing existing samples. This editing step allows us to control the strength of the editing process, determining the extent to which the generated data deviates from the target domain. To evaluate the effectiveness of DiffsFormer augmented training, we conduct experiments on the CSI300 and CSI800 datasets, employing eight commonly used machine learning models. The proposed method achieves relative improvements of 7.2% and 27.8% in annualized return ratio for the respective datasets. Furthermore, we perform extensive experiments to gain insights into the functionality of DiffsFormer and its constituent components, elucidating how they address the challenges of data scarcity and enhance the overall model performance. Our research demonstrates the efficacy of leveraging AIGS and the DiffsFormer architecture to mitigate data scarcity in stock forecasting tasks.
Model-free Test Time Adaptation for Out-Of-Distribution Detection
Zhang, YiFan, Wang, Xue, Zhou, Tian, Yuan, Kun, Zhang, Zhang, Wang, Liang, Jin, Rong, Tan, Tieniu
Out-of-distribution (OOD) detection is essential for the reliability of ML models. Most existing methods for OOD detection learn a fixed decision criterion from a given in-distribution dataset and apply it universally to decide if a data point is OOD. Recent work~\cite{fang2022is} shows that given only in-distribution data, it is impossible to reliably detect OOD data without extra assumptions. Motivated by the theoretical result and recent exploration of test-time adaptation methods, we propose a Non-Parametric Test Time \textbf{Ada}ptation framework for \textbf{O}ut-Of-\textbf{D}istribution \textbf{D}etection (\abbr). Unlike conventional methods, \abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions. The framework incorporates detected OOD instances into decision-making, reducing false positive rates, particularly when ID and OOD distributions overlap significantly. We demonstrate the effectiveness of \abbr through comprehensive experiments on multiple OOD detection benchmarks, extensive empirical studies show that \abbr significantly improves the performance of OOD detection over state-of-the-art methods. Specifically, \abbr reduces the false positive rate (FPR95) by $23.23\%$ on the CIFAR-10 benchmarks and $38\%$ on the ImageNet-1k benchmarks compared to the advanced methods. Lastly, we theoretically verify the effectiveness of \abbr.