Goto

Collaborating Authors

 Wang, Xuan


MEGClass: Extremely Weakly Supervised Text Classification via Mutually-Enhancing Text Granularities

arXiv.org Artificial Intelligence

Text classification is essential for organizing unstructured text. Traditional methods rely on human annotations or, more recently, a set of class seed words for supervision, which can be costly, particularly for specialized or emerging domains. To address this, using class surface names alone as extremely weak supervision has been proposed. However, existing approaches treat different levels of text granularity (documents, sentences, or words) independently, disregarding inter-granularity class disagreements and the context identifiable exclusively through joint extraction. In order to tackle these issues, we introduce MEGClass, an extremely weakly-supervised text classification method that leverages Mutually-Enhancing Text Granularities. MEGClass utilizes coarse- and fine-grained context signals obtained by jointly considering a document's most class-indicative words and sentences. This approach enables the learning of a contextualized document representation that captures the most discriminative class indicators. By preserving the heterogeneity of potential classes, MEGClass can select the most informative class-indicative documents as iterative feedback to enhance the initial word-based class representations and ultimately fine-tune a pre-trained text classifier. Extensive experiments on seven benchmark datasets demonstrate that MEGClass outperforms other weakly and extremely weakly supervised methods.


PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming

arXiv.org Artificial Intelligence

Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number "no relation" instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the "no relation" problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.


Syntax-Guided Domain Adaptation for Aspect-based Sentiment Analysis

arXiv.org Artificial Intelligence

Aspect-based sentiment analysis (ABSA) aims at extracting opinionated aspect terms in review texts and determining their sentiment polarities, which is widely studied in both academia and industry. As a fine-grained classification task, the annotation cost is extremely high. Domain adaptation is a popular solution to alleviate the data deficiency issue in new domains by transferring common knowledge across domains. Most cross-domain ABSA studies are based on structure correspondence learning (SCL), and use pivot features to construct auxiliary tasks for narrowing down the gap between domains. However, their pivot-based auxiliary tasks can only transfer knowledge of aspect terms but not sentiment, limiting the performance of existing models. In this work, we propose a novel Syntax-guided Domain Adaptation Model, named SDAM, for more effective cross-domain ABSA. SDAM exploits syntactic structure similarities for building pseudo training instances, during which aspect terms of target domain are explicitly related to sentiment polarities. Besides, we propose a syntax-based BERT mask language model for further capturing domain-invariant features. Finally, to alleviate the sentiment inconsistency issue in multi-gram aspect terms, we introduce a span-based joint aspect term and sentiment analysis module into the cross-domain End2End ABSA. Experiments on five benchmark datasets show that our model consistently outperforms the state-of-the-art baselines with respect to Micro-F1 metric for the cross-domain End2End ABSA task.


ConFL: Constraint-guided Fuzzing for Machine Learning Framework

arXiv.org Artificial Intelligence

As machine learning gains prominence in various sectors of society for automated decision-making, concerns have risen regarding potential vulnerabilities in machine learning (ML) frameworks. Nevertheless, testing these frameworks is a daunting task due to their intricate implementation. Previous research on fuzzing ML frameworks has struggled to effectively extract input constraints and generate valid inputs, leading to extended fuzzing durations for deep execution or revealing the target crash. In this paper, we propose ConFL, a constraint-guided fuzzer for ML frameworks. ConFL automatically extracting constraints from kernel codes without the need for any prior knowledge. Guided by the constraints, ConFL is able to generate valid inputs that can pass the verification and explore deeper paths of kernel codes. In addition, we design a grouping technique to boost the fuzzing efficiency. To demonstrate the effectiveness of ConFL, we evaluated its performance mainly on Tensorflow. We find that ConFL is able to cover more code lines, and generate more valid inputs than state-of-the-art (SOTA) fuzzers. More importantly, ConFL found 84 previously unknown vulnerabilities in different versions of Tensorflow, all of which were assigned with new CVE ids, of which 3 were critical-severity and 13 were high-severity. We also extended ConFL to test PyTorch and Paddle, 7 vulnerabilities are found to date.


ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision

arXiv.org Artificial Intelligence

Structured chemical reaction information plays a vital role for chemists engaged in laboratory work and advanced endeavors such as computer-aided drug design. Despite the importance of extracting structured reactions from scientific literature, data annotation for this purpose is cost-prohibitive due to the significant labor required from domain experts. Consequently, the scarcity of sufficient training data poses an obstacle to the progress of related models in this domain. In this paper, we propose ReactIE, which combines two weakly supervised approaches for pre-training. Our method utilizes frequent patterns within the text as linguistic cues to identify specific characteristics of chemical reactions. Additionally, we adopt synthetic data from patent records as distant supervision to incorporate domain knowledge into the model. Experiments demonstrate that ReactIE achieves substantial improvements and outperforms all existing baselines.


Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language Models

arXiv.org Artificial Intelligence

The mission of open knowledge graph (KG) completion is to draw new findings from known facts. Existing works that augment KG completion require either (1) factual triples to enlarge the graph reasoning space or (2) manually designed prompts to extract knowledge from a pre-trained language model (PLM), exhibiting limited performance and requiring expensive efforts from experts. To this end, we propose TAGREAL that automatically generates quality query prompts and retrieves support information from large text corpora to probe knowledge from PLM for KG completion. The results show that TAGREAL achieves state-of-the-art performance on two benchmark datasets. We find that TAGREAL has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.


OntoType: Ontology-Guided Zero-Shot Fine-Grained Entity Typing with Weak Supervision from Pre-Trained Language Models

arXiv.org Artificial Intelligence

Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, will play an important role in natural language understanding. A supervised FET method, which typically relies on human-annotated corpora for training, is costly and difficult to scale. Recent studies leverage pre-trained language models (PLMs) to generate rich and context-aware weak supervision for FET. However, a PLM may still generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel zero-shot, ontology-guided FET method, OntoType, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing.


High-Fidelity Clothed Avatar Reconstruction from a Single Image

arXiv.org Artificial Intelligence

This paper presents a framework for efficient 3D clothed avatar reconstruction. By combining the advantages of the high accuracy of optimization-based methods and the efficiency of learning-based methods, we propose a coarse-to-fine way to realize a high-fidelity clothed avatar reconstruction (CAR) from a single image. At the first stage, we use an implicit model to learn the general shape in the canonical space of a person in a learning-based way, and at the second stage, we refine the surface detail by estimating the non-rigid deformation in the posed space in an optimization way. A hyper-network is utilized to generate a good initialization so that the convergence o f the optimization process is greatly accelerated. Extensive experiments on various datasets show that the proposed CAR successfully produces high-fidelity avatars for arbitrarily clothed humans in real scenes.


Team Coordination on Graphs with State-Dependent Edge Cost

arXiv.org Artificial Intelligence

This paper studies a team coordination problem in a graph environment. Specifically, we incorporate "support" action which an agent can take to reduce the cost for its teammate to traverse some edges that have higher costs otherwise. Due to this added feature, the graph traversal is no longer a standard multi-agent path planning problem. To solve this new problem, we propose a novel formulation by posing it as a planning problem in the joint state space: the joint state graph (JSG). Since the edges of JSG implicitly incorporate the support actions taken by the agents, we are able to now optimize the joint actions by solving a standard single-agent path planning problem in JSG. One main drawback of this approach is the curse of dimensionality in both the number of agents and the size of the graph. To improve scalability in graph size, we further propose a hierarchical decomposition method to perform path planning in two levels. We provide complexity analysis as well as a statistical analysis to demonstrate the efficiency of our algorithm.


SVDE: Scalable Value-Decomposition Exploration for Cooperative Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Value-decomposition methods, which reduce the difficulty of a multi-agent system by decomposing the joint state-action space into local observation-action spaces, have become popular in cooperative multi-agent reinforcement learning (MARL). However, value-decomposition methods still have the problems of tremendous sample consumption for training and lack of active exploration. In this paper, we propose a scalable value-decomposition exploration (SVDE) method, which includes a scalable training mechanism, intrinsic reward design, and explorative experience replay. The scalable training mechanism asynchronously decouples strategy learning with environmental interaction, so as to accelerate sample generation in a MapReduce manner. For the problem of lack of exploration, an intrinsic reward design and explorative experience replay are proposed, so as to enhance exploration to produce diverse samples and filter non-novel samples, respectively. Empirically, our method achieves the best performance on almost all maps compared to other popular algorithms in a set of StarCraft II micromanagement games. A data-efficiency experiment also shows the acceleration of SVDE for sample collection and policy convergence, and we demonstrate the effectiveness of factors in SVDE through a set of ablation experiments.