Goto

Collaborating Authors

 Wang, Xinyan


ISPO: An Integrated Ontology of Symptom Phenotypes for Semantic Integration of Traditional Chinese Medical Data

arXiv.org Artificial Intelligence

Symptom phenotypes are one of the key types of manifestations for diagnosis and treatment of various disease conditions. However, the diversity of symptom terminologies is one of the major obstacles hindering the analysis and knowledge sharing of various types of symptom-related medical data particularly in the fields of Traditional Chinese Medicine (TCM). Objective: This study aimed to construct an Integrated Ontology of symptom phenotypes (ISPO) to support the data mining of Chinese EMRs and real-world study in TCM field. Methods: To construct an integrated ontology of symptom phenotypes (ISPO), we manually annotated classical TCM textbooks and large-scale Chinese electronic medical records (EMRs) to collect symptom terms with support from a medical text annotation system. Furthermore, to facilitate the semantic interoperability between different terminologies, we incorporated public available biomedical vocabularies by manual mapping between Chinese terms and English terms with cross-references to source vocabularies. In addition, we evaluated the ISPO using independent clinical EMRs to provide a high-usable medical ontology for clinical data analysis. Results: By integrating 78,696 inpatient cases of EMRs, 5 biomedical vocabularies, 21 TCM books and dictionaries, ISPO provides 3,147 concepts, 23,475 terms, and 55,552 definition or contextual texts. Adhering to the taxonomical structure of the related anatomical systems of symptom phenotypes, ISPO provides 12 top-level categories and 79 middle-level sub-categories. The validation of data analysis showed the ISPO has a coverage rate of 95.35%, 98.53% and 92.66% for symptom terms with occurrence rates of 0.5% in additional three independent curated clinical datasets, which can demonstrate the significant value of ISPO in mapping clinical terms to ontologies.


DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning

arXiv.org Artificial Intelligence

The task of industrial detection based on deep learning often involves solving two problems: (1) obtaining sufficient and effective data samples, (2) and using efficient and convenient model training methods. In this paper, we introduce a novel defect-generation method, named DDPM-MoCo, to address these issues. Firstly, we utilize the Denoising Diffusion Probabilistic Model (DDPM) to generate high-quality defect data samples, overcoming the problem of insufficient sample data for model learning. Furthermore, we utilize the unsupervised learning Momentum Contrast model (MoCo) with an enhanced batch contrastive loss function for training the model on unlabeled data, addressing the efficiency and consistency challenges in large-scale negative sample encoding during diffusion model training. The experimental results showcase an enhanced visual detection method for identifying defects on metal surfaces, covering the entire process, starting from generating unlabeled sample data for training the diffusion model, to utilizing the same labeled sample data for downstream detection tasks. This study offers valuable practical insights and application potential for visual detection in the metal processing industry.


Graph Neural Aggregation-diffusion with Metastability

arXiv.org Artificial Intelligence

Continuous graph neural models based on differential equations have expanded the architecture of graph neural networks (GNNs). Due to the connection between graph diffusion and message passing, diffusion-based models have been widely studied. However, diffusion naturally drives the system towards an equilibrium state, leading to issues like over-smoothing. To this end, we propose GRADE inspired by graph aggregation-diffusion equations, which includes the delicate balance between nonlinear diffusion and aggregation induced by interaction potentials. The node representations obtained through aggregation-diffusion equations exhibit metastability, indicating that features can aggregate into multiple clusters. In addition, the dynamics within these clusters can persist for long time periods, offering the potential to alleviate over-smoothing effects. This nonlinear diffusion in our model generalizes existing diffusion-based models and establishes a connection with classical GNNs. We prove that GRADE achieves competitive performance across various benchmarks and alleviates the over-smoothing issue in GNNs evidenced by the enhanced Dirichlet energy.


ADMarker: A Multi-Modal Federated Learning System for Monitoring Digital Biomarkers of Alzheimer's Disease

arXiv.org Artificial Intelligence

Alzheimer's Disease (AD) and related dementia are a growing global health challenge due to the aging population. In this paper, we present ADMarker, the first end-to-end system that integrates multi-modal sensors and new federated learning algorithms for detecting multidimensional AD digital biomarkers in natural living environments. ADMarker features a novel three-stage multi-modal federated learning architecture that can accurately detect digital biomarkers in a privacy-preserving manner. Our approach collectively addresses several major real-world challenges, such as limited data labels, data heterogeneity, and limited computing resources. We built a compact multi-modality hardware system and deployed it in a four-week clinical trial involving 91 elderly participants. The results indicate that ADMarker can accurately detect a comprehensive set of digital biomarkers with up to 93.8% accuracy and identify early AD with an average of 88.9% accuracy. ADMarker offers a new platform that can allow AD clinicians to characterize and track the complex correlation between multidimensional interpretable digital biomarkers, demographic factors of patients, and AD diagnosis in a longitudinal manner.


FFF: Fragments-Guided Flexible Fitting for Building Complete Protein Structures

arXiv.org Artificial Intelligence

Cryo-electron microscopy (cryo-EM) is a technique for reconstructing the 3-dimensional (3D) structure of biomolecules (especially large protein complexes and molecular assemblies). As the resolution increases to the near-atomic scale, building protein structures de novo from cryo-EM maps becomes possible. Recently, recognition-based de novo building methods have shown the potential to streamline this process. However, it cannot build a complete structure due to the low signal-to-noise ratio (SNR) problem. At the same time, AlphaFold has led to a great breakthrough in predicting protein structures. This has inspired us to combine fragment recognition and structure prediction methods to build a complete structure. In this paper, we propose a new method named FFF that bridges protein structure prediction and protein structure recognition with flexible fitting. First, a multi-level recognition network is used to capture various structural features from the input 3D cryo-EM map. Next, protein structural fragments are generated using pseudo peptide vectors and a protein sequence alignment method based on these extracted features. Finally, a complete structural model is constructed using the predicted protein fragments via flexible fitting. Based on our benchmark tests, FFF outperforms the baseline methods for building complete protein structures.


A Pre-training Framework for Knowledge Graph Completion

arXiv.org Artificial Intelligence

Knowledge graph completion (KGC) is one of the effective methods to identify new facts in knowledge graph. Except for a few methods based on graph network, most of KGC methods trend to be trained based on independent triples, while are difficult to take a full account of the information of global network connection contained in knowledge network. To address these issues, in this study, we propose a simple and effective Network-based Pre-training framework for knowledge graph completion (termed NetPeace), which takes into account the information of global network connection and local triple relationships in knowledge graph. Experiments show that in NetPeace framework, multiple KGC models yields consistent and significant improvements on benchmarks (e.g., 36.45% Hits@1 and 27.40% MRR improvements for TuckER on FB15k-237), especially dense knowledge graph. On the challenging low-resource task, NetPeace that benefits from the global features of KG achieves higher performance (104.03% MRR and 143.89% Hit@1 improvements at most) than original models.


Knowledge Graph Completion based on Tensor Decomposition for Disease Gene Prediction

arXiv.org Artificial Intelligence

Accurate identification of disease genes has consistently been one of the keys to decoding a disease's molecular mechanism. Most current approaches focus on constructing biological networks and utilizing machine learning, especially, deep learning to identify disease genes, but ignore the complex relations between entities in the biological knowledge graph. In this paper, we construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end Knowledge graph completion model for Disease Gene Prediction using interactional tensor decomposition (called KDGene). KDGene introduces an interaction module between the embeddings of entities and relations to tensor decomposition, which can effectively enhance the information interaction in biological knowledge. Experimental results show that KDGene significantly outperforms state-of-the-art algorithms. Furthermore, the comprehensive biological analysis of the case of diabetes mellitus confirms KDGene's ability for identifying new and accurate candidate genes. This work proposes a scalable knowledge graph completion framework to identify disease candidate genes, from which the results are promising to provide valuable references for further wet experiments.