Goto

Collaborating Authors

 Wang, Xintong


Flow-based Bayesian filtering for high-dimensional nonlinear stochastic dynamical systems

arXiv.org Machine Learning

Bayesian filtering for high-dimensional nonlinear stochastic dynamical systems is a fundamental yet challenging problem in many fields of science and engineering. Existing methods face significant obstacles: Gaussian-based filters struggle with non-Gaussian distributions, while sequential Monte Carlo methods are computationally intensive and prone to particle degeneracy in high dimensions. Although generative models in machine learning have made significant progress in modeling high-dimensional non-Gaussian distributions, their inefficiency in online updating limits their applicability to filtering problems. To address these challenges, we propose a flow-based Bayesian filter (FBF) that integrates normalizing flows to construct a novel latent linear state-space model with Gaussian filtering distributions. This framework facilitates efficient density estimation and sampling using invertible transformations provided by normalizing flows, and it enables the construction of filters in a data-driven manner, without requiring prior knowledge of system dynamics or observation models. Numerical experiments demonstrate the superior accuracy and efficiency of FBF.


Multilingual and Explainable Text Detoxification with Parallel Corpora

arXiv.org Artificial Intelligence

Even with various regulations in place across countries and social media platforms (Government of India, 2021; European Parliament and Council of the European Union, 2022, digital abusive speech remains a significant issue. One potential approach to address this challenge is automatic text detoxification, a text style transfer (TST) approach that transforms toxic language into a more neutral or non-toxic form. To date, the availability of parallel corpora for the text detoxification task (Logachevavet al., 2022; Atwell et al., 2022; Dementievavet al., 2024a) has proven to be crucial for state-of-the-art approaches. With this work, we extend parallel text detoxification corpus to new languages -- German, Chinese, Arabic, Hindi, and Amharic -- testing in the extensive multilingual setup TST baselines. Next, we conduct the first of its kind an automated, explainable analysis of the descriptive features of both toxic and non-toxic sentences, diving deeply into the nuances, similarities, and differences of toxicity and detoxification across 9 languages. Finally, based on the obtained insights, we experiment with a novel text detoxification method inspired by the Chain-of-Thoughts reasoning approach, enhancing the prompting process through clustering on relevant descriptive attributes.


Game-theoretic LLM: Agent Workflow for Negotiation Games

arXiv.org Artificial Intelligence

This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at \url{https://github.com/Wenyueh/game_theory}.


CogSteer: Cognition-Inspired Selective Layer Intervention for Efficient Semantic Steering in Large Language Models

arXiv.org Artificial Intelligence

Despite their impressive capabilities, large language models (LLMs) often lack interpretability and can generate toxic content. While using LLMs as foundation models and applying semantic steering methods are widely practiced, we believe that efficient methods should be based on a thorough understanding of LLM behavior. To this end, we propose using eye movement measures to interpret LLM behavior across layers. We find that LLMs exhibit patterns similar to human gaze across layers and different layers function differently. Inspired by these findings, we introduce a heuristic steering layer selection and apply it to layer intervention methods via fine-tuning and inference. Using language toxification and detoxification as test beds, we demonstrate that our proposed CogSteer methods achieve better results in terms of toxicity scores while efficiently saving 97% of the computational resources and 60% of the training time. Our model-agnostic approach can be adopted into various LLMs, contributing to their interpretability and promoting trustworthiness for safe deployment.


Bounding-Box Inference for Error-Aware Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

In model-based reinforcement learning, simulated experiences from the learned model are often treated as equivalent to experience from the real environment. However, when the model is inaccurate, it can catastrophically interfere with policy learning. Alternatively, the agent might learn about the model's accuracy and selectively use it only when it can provide reliable predictions. We empirically explore model uncertainty measures for selective planning and show that best results require distribution insensitive inference to estimate the uncertainty over model-based updates. To that end, we propose and evaluate bounding-box inference, which operates on bounding-boxes around sets of possible states and other quantities. We find that bounding-box inference can reliably support effective selective planning.


Pitch-Aware RNN-T for Mandarin Chinese Mispronunciation Detection and Diagnosis

arXiv.org Artificial Intelligence

Subsequently, Zhang et al. [1] adopted Mispronunciation Detection and Diagnosis (MDD) systems, an autoregressive model, the Recurrent Neural Network Transducer leveraging Automatic Speech Recognition (ASR), face two (RNN-T) [9], for MDD. This approach aims to capture main challenges in Mandarin Chinese: 1) The two-stage models the temporal dependence of mispronunciation patterns, showing create an information gap between the phoneme or tone classification better performance than Connectionist Temporal Classification stage and the MDD stage.


Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) are increasingly adept at generating contextually detailed and coherent responses from visual inputs. However, their application in multimodal decision-making and open-ended generation is hindered by a notable rate of hallucinations, where generated text inaccurately represents the visual contents. To address this issue, this paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference. Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules. ICD contrasts distributions from standard and instruction disturbance, thereby increasing alignment uncertainty and effectively subtracting hallucinated concepts from the original distribution. Through comprehensive experiments on discriminative benchmarks (POPE and MME) and a generative benchmark (LLaVa-Bench), we demonstrate that ICD significantly mitigates both object-level and attribute-level hallucinations. Moreover, our method not only addresses hallucinations but also significantly enhances the general perception and recognition capabilities of LVLMs.


Probing Language Models from A Human Behavioral Perspective

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the understanding of their prediction process and internal mechanisms, such as feed-forward networks and multi-head self-attention, remains largely unexplored. In this study, we probe LLMs from a human behavioral perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful indicators of reading patterns. Our findings reveal that LLMs exhibit a prediction pattern distinct from that of RNN-based LMs. Moreover, with the escalation of FFN layers, the capacity for memorization and linguistic knowledge encoding also surges until it peaks, subsequently pivoting to focus on comprehension capacity. The functions of self-attention are distributed across multiple heads. Lastly, we scrutinize the gate mechanisms, finding that they control the flow of information, with some gates promoting, while others eliminating information.


Efficient Bayesian inference using physics-informed invertible neural networks for inverse problems

arXiv.org Artificial Intelligence

In this paper, we introduce an innovative approach for addressing Bayesian inverse problems through the utilization of physics-informed invertible neural networks (PI-INN). The PI-INN framework encompasses two sub-networks: an invertible neural network (INN) and a neural basis network (NB-Net). The primary role of the NB-Net lies in modeling the spatial basis functions characterizing the solution to the forward problem dictated by the underlying partial differential equation. Simultaneously, the INN is designed to partition the parameter vector linked to the input physical field into two distinct components: the expansion coefficients representing the forward problem solution and the Gaussian latent noise. If the forward mapping is precisely estimated, and the statistical independence between expansion coefficients and latent noise is well-maintained, the PI-INN offers a precise and efficient generative model for Bayesian inverse problems, yielding tractable posterior density estimates. As a particular physics-informed deep learning model, the primary training challenge for PI-INN centers on enforcing the independence constraint, which we tackle by introducing a novel independence loss based on estimated density. We support the efficacy and precision of the proposed PI-INN through a series of numerical experiments, including inverse kinematics, 1-dimensional and 2-dimensional diffusion equations, and seismic traveltime tomography. Specifically, our experimental results showcase the superior performance of the proposed independence loss in comparison to the commonly used but computationally demanding kernel-based maximum mean discrepancy loss.


Platform Behavior under Market Shocks: A Simulation Framework and Reinforcement-Learning Based Study

arXiv.org Artificial Intelligence

We study the behavior of an economic platform (e.g., Amazon, Uber Eats, Instacart) under shocks, such as COVID-19 lockdowns, and the effect of different regulation considerations imposed on a platform. To this end, we develop a multi-agent Gym environment of a platform economy in a dynamic, multi-period setting, with the possible occurrence of economic shocks. Buyers and sellers are modeled as economically-motivated agents, choosing whether or not to pay corresponding fees to use the platform. We formulate the platform's problem as a partially observable Markov decision process, and use deep reinforcement learning to model its fee setting and matching behavior. We consider two major types of regulation frameworks: (1) taxation policies and (2) platform fee restrictions, and offer extensive simulated experiments to characterize regulatory tradeoffs under optimal platform responses. Our results show that while many interventions are ineffective with a sophisticated platform actor, we identify a particular kind of regulation -- fixing fees to optimal, pre-shock fees while still allowing a platform to choose how to match buyer demands to sellers -- as promoting the efficiency, seller diversity, and resilience of the overall economic system.