Goto

Collaborating Authors

 Wang, Xinlei


From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection

arXiv.org Artificial Intelligence

This paper introduces a novel approach that leverages Large Language Models (LLMs) and Generative Agents to enhance time series forecasting by reasoning across both text and time series data. With language as a medium, our method adaptively integrates social events into forecasting models, aligning news content with time series fluctuations to provide richer insights. Specifically, we utilize LLM-based agents to iteratively filter out irrelevant news and employ human-like reasoning to evaluate predictions. This enables the model to analyze complex events, such as unexpected incidents and shifts in social behavior, and continuously refine the selection logic of news and the robustness of the agent's output. By integrating selected news events with time series data, we fine-tune a pre-trained LLM to predict sequences of digits in time series. The results demonstrate significant improvements in forecasting accuracy, suggesting a potential paradigm shift in time series forecasting through the effective utilization of unstructured news data.


Physical Property Understanding from Language-Embedded Feature Fields

arXiv.org Artificial Intelligence

Can computers perceive the physical properties of objects solely through vision? Research in cognitive science and vision science has shown that humans excel at identifying materials and estimating their physical properties based purely on visual appearance. In this paper, we present a novel approach for dense prediction of the physical properties of objects using a collection of images. Inspired by how humans reason about physics through vision, we leverage large language models to propose candidate materials for each object. We then construct a language-embedded point cloud and estimate the physical properties of each 3D point using a zero-shot kernel regression approach. Our method is accurate, annotation-free, and applicable to any object in the open world. Experiments demonstrate the effectiveness of the proposed approach in various physical property reasoning tasks, such as estimating the mass of common objects, as well as other properties like friction and hardness.


Intersection-free Robot Manipulation with Soft-Rigid Coupled Incremental Potential Contact

arXiv.org Artificial Intelligence

This paper presents a novel simulation platform, ZeMa, designed for robotic manipulation tasks concerning soft objects. Such simulation ideally requires three properties: two-way soft-rigid coupling, intersection-free guarantees, and frictional contact modeling, with acceptable runtime suitable for deep and reinforcement learning tasks. Current simulators often satisfy only a subset of these needs, primarily focusing on distinct rigid-rigid or soft-soft interactions. The proposed ZeMa prioritizes physical accuracy and integrates the incremental potential contact method, offering unified dynamics simulation for both soft and rigid objects. It efficiently manages soft-rigid contact, operating 75x faster than baseline tools with similar methodologies like IPC-GraspSim. To demonstrate its applicability, we employ it for parallel grasp generation, penetrated grasp repair, and reinforcement learning for grasping, successfully transferring the trained RL policy to real-world scenarios.


Multiple Instance Neural Networks Based on Sparse Attention for Cancer Detection using T-cell Receptor Sequences

arXiv.org Artificial Intelligence

Early detection of cancers has been much explored due to its paramount importance in biomedical fields. Among different types of data used to answer this biological question, studies based on T cell receptors (TCRs) are under recent spotlight due to the growing appreciation of the roles of the host immunity system in tumor biology. However, the one-to-many correspondence between a patient and multiple TCR sequences hinders researchers from simply adopting classical statistical/machine learning methods. There were recent attempts to model this type of data in the context of multiple instance learning (MIL). Despite the novel application of MIL to cancer detection using TCR sequences and the demonstrated adequate performance in several tumor types, there is still room for improvement, especially for certain cancer types. Furthermore, explainable neural network models are not fully investigated for this application. In this article, we propose multiple instance neural networks based on sparse attention (MINN-SA) to enhance the performance in cancer detection and explainability. The sparse attention structure drops out uninformative instances in each bag, achieving both interpretability and better predictive performance in combination with the skip connection. Our experiments show that MINN-SA yields the highest area under the ROC curve (AUC) scores on average measured across 10 different types of cancers, compared to existing MIL approaches. Moreover, we observe from the estimated attentions that MINN-SA can identify the TCRs that are specific for tumor antigens in the same T cell repertoire.