Wang, Xiaoye
Dynamic Scheduling Strategies for Resource Optimization in Computing Environments
Wang, Xiaoye
The rapid development of cloud-native architecture has promoted the widespread application of container technology, but the optimization problems in container scheduling and resource management still face many challenges. This paper proposes a container scheduling method based on multi-objective optimization, which aims to balance key performance indicators such as resource utilization, load balancing and task completion efficiency. By introducing optimization models and heuristic algorithms, the scheduling strategy is comprehensively improved, and experimental verification is carried out using the real Google Cluster Data dataset. The experimental results show that compared with traditional static rule algorithms and heuristic algorithms, the optimized scheduling scheme shows significant advantages in resource utilization, load balancing and burst task completion efficiency. This shows that the proposed method can effectively improve resource management efficiency and ensure service quality and system stability in complex dynamic cloud environments. At the same time, this paper also explores the future development direction of scheduling algorithms in multi-tenant environments, heterogeneous cloud computing, and cross-edge and cloud collaborative computing scenarios, and proposes research prospects for energy consumption optimization, adaptive scheduling and fairness. The research results not only provide a theoretical basis and practical reference for container scheduling under cloud-native architecture, but also lay a foundation for further realizing intelligent and efficient resource management.
AI-Driven Health Monitoring of Distributed Computing Architecture: Insights from XGBoost and SHAP
Sun, Xiaoxuan, Yao, Yue, Wang, Xiaoye, Li, Pochun, Li, Xuan
With the rapid development of artificial intelligence technology, its application in the optimization of complex computer systems is becoming more and more extensive. Edge computing is an efficient distributed computing architecture, and the health status of its nodes directly affects the performance and reliability of the entire system. In view of the lack of accuracy and interpretability of traditional methods in node health status judgment, this paper proposes a health status judgment method based on XGBoost and combines the SHAP method to analyze the interpretability of the model. Through experiments, it is verified that XGBoost has superior performance in processing complex features and nonlinear data of edge computing nodes, especially in capturing the impact of key features (such as response time and power consumption) on node status. SHAP value analysis further reveals the global and local importance of features, so that the model not only has high precision discrimination ability but also can provide intuitive explanations, providing data support for system optimization. Research shows that the combination of AI technology and computer system optimization can not only realize the intelligent monitoring of the health status of edge computing nodes but also provide a scientific basis for dynamic optimization scheduling, resource management and anomaly detection. In the future, with the in-depth development of AI technology, model dynamics, cross-node collaborative optimization and multimodal data fusion will become the focus of research, providing important support for the intelligent evolution of edge computing systems.
Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments
Li, Pochun, Xiao, Yuyang, Yan, Jinghua, Li, Xuan, Wang, Xiaoye
This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning. In modern computing environments, characterized by increasing data volumes, task complexity, and dynamic workloads, traditional static scheduling methods such as Round-Robin and Priority Scheduling fail to meet the demands of efficient resource allocation and real-time adaptability. By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization. Through extensive experiments, the superiority of the proposed approach is demonstrated in both task completion time and resource utilization, outperforming traditional and dynamic resource allocation (DRA) algorithms. These findings are critical as they highlight the potential of intelligent scheduling algorithms based on reinforcement learning to address the growing complexity and unpredictability of computing environments. This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption. The broad applicability of this approach makes it a promising candidate for next-generation computing frameworks, such as edge computing, cloud computing, and the Internet of Things.
Safety challenges of AI in medicine
Wang, Xiaoye, Zhang, Nicole Xi, He, Hongyu, Nguyen, Trang, Yu, Kun-Hsing, Deng, Hao, Brandt, Cynthia, Bitterman, Danielle S., Pan, Ling, Cheng, Ching-Yu, Zou, James, Liu, Dianbo
Recent advancements in artificial intelligence (AI), particularly in deep learning and large language models (LLMs), have accelerated their integration into medicine. However, these developments have also raised public concerns about the safe application of AI. In healthcare, these concerns are especially pertinent, as the ethical and secure deployment of AI is crucial for protecting patient health and privacy. This review examines potential risks in AI practices that may compromise safety in medicine, including reduced performance across diverse populations, inconsistent operational stability, the need for high-quality data for effective model tuning, and the risk of data breaches during model development and deployment. For medical practitioners, patients, and researchers, LLMs provide a convenient way to interact with AI and data through language. However, their emergence has also amplified safety concerns, particularly due to issues like hallucination. Second part of this article explores safety issues specific to LLMs in medical contexts, including limitations in processing complex logic, challenges in aligning AI objectives with human values, the illusion of understanding, and concerns about diversity. Thoughtful development of safe AI could accelerate its adoption in real-world medical settings.