Goto

Collaborating Authors

 Wang, Xiaoqing


Learning to Retrieve for Job Matching

arXiv.org Artificial Intelligence

Web-scale search systems typically tackle the scalability challenge As one of the largest professional networking platforms globally, with a two-step paradigm: retrieval and ranking. The retrieval step, LinkedIn is a hub for job seekers and recruiters, with 65M+ job also known as candidate selection, often involves extracting standardized seekers utilizing the search and recommendation services weekly entities, creating an inverted index, and performing term to discover millions of open job listings. To enable realtime personalization matching for retrieval. Such traditional methods require manual for job seekers, we adopted the classic two-stage paradigm and time-consuming development of query models. In this paper, of retrieval and ranking to tackle the scalability challenge. The retrieval we discuss applying learning-to-retrieve technology to enhance layer, also known as candidate selection, chooses a small set LinkedIn's job search and recommendation systems. In the realm of of relevant jobs from the set of all jobs, after which the ranking layer promoted jobs, the key objective is to improve the quality of applicants, performs a more computationally expensive second-pass scoring thereby delivering value to recruiter customers. To achieve and sorting of the resulting candidate set. This paper focuses on this, we leverage confirmed hire data to construct a graph that improving the methodology and systems for retrieval.


Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot Self-Supervised Learning Reconstruction

arXiv.org Artificial Intelligence

Diffusion MRI is commonly performed using echo-planar imaging (EPI) due to its rapid acquisition time. However, the resolution of diffusion-weighted images is often limited by magnetic field inhomogeneity-related artifacts and blurring induced by T2- and T2*-relaxation effects. To address these limitations, multi-shot EPI (msEPI) combined with parallel imaging techniques is frequently employed. Nevertheless, reconstructing msEPI can be challenging due to phase variation between multiple shots. In this study, we introduce a novel msEPI reconstruction approach called zero-MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction for Improved Diffusion MRI). This method jointly reconstructs msEPI data by incorporating deep learning-based image regularization techniques. The network incorporates CNN denoisers in both k- and image-spaces, while leveraging virtual coils to enhance image reconstruction conditioning. By employing a self-supervised learning technique and dividing sampled data into three groups, the proposed approach achieves superior results compared to the state-of-the-art parallel imaging method, as demonstrated in an in-vivo experiment.