Goto

Collaborating Authors

 Wang, Xiaolu


Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning

arXiv.org Artificial Intelligence

In cooperative multi-agent reinforcement learning (MARL), well-designed communication protocols can effectively facilitate consensus among agents, thereby enhancing task performance. Moreover, in large-scale multi-agent systems commonly found in real-world applications, effective communication plays an even more critical role due to the escalated challenge of partial observability compared to smaller-scale setups. In this work, we endeavor to develop a scalable communication protocol for MARL. Unlike previous methods that focus on selecting optimal pairwise communication links-a task that becomes increasingly complex as the number of agents grows-we adopt a global perspective on communication topology design. Specifically, we propose utilizing the exponential topology to enable rapid information dissemination among agents by leveraging its small-diameter and small-size properties. This approach leads to a scalable communication protocol, named ExpoComm. To fully unlock the potential of exponential graphs as communication topologies, we employ memory-based message processors and auxiliary tasks to ground messages, ensuring that they reflect global information and benefit decision-making. Extensive experiments on large-scale cooperative benchmarks, including MAgent and Infrastructure Management Planning, demonstrate the superior performance and robust zero-shot transferability of ExpoComm compared to existing communication strategies. The code is publicly available at https://github.com/LXXXXR/ExpoComm.


SAFL: Structure-Aware Personalized Federated Learning via Client-Specific Clustering and SCSI-Guided Model Pruning

arXiv.org Artificial Intelligence

Federated Learning (FL) enables clients to collaboratively train machine learning models without sharing local data, preserving privacy in diverse environments. While traditional FL approaches preserve privacy, they often struggle with high computational and communication overhead. To address these issues, model pruning is introduced as a strategy to streamline computations. However, existing pruning methods, when applied solely based on local data, often produce sub-models that inadequately reflect clients' specific tasks due to data insufficiency. To overcome these challenges, this paper introduces SAFL (Structure-Aware Federated Learning), a novel framework that enhances personalized federated learning through client-specific clustering and Similar Client Structure Information (SCSI)-guided model pruning. SAFL employs a two-stage process: initially, it groups clients based on data similarities and uses aggregated pruning criteria to guide the pruning process, facilitating the identification of optimal sub-models. Subsequently, clients train these pruned models and engage in server-based aggregation, ensuring tailored and efficient models for each client. This method significantly reduces computational overhead while improving inference accuracy. Extensive experiments demonstrate that SAFL markedly diminishes model size and improves performance, making it highly effective in federated environments characterized by heterogeneous data.


Dual-Delayed Asynchronous SGD for Arbitrarily Heterogeneous Data

arXiv.org Artificial Intelligence

We consider the distributed learning problem with data dispersed across multiple workers under the orchestration of a central server. Asynchronous Stochastic Gradient Descent (SGD) has been widely explored in such a setting to reduce the synchronization overhead associated with parallelization. However, the performance of asynchronous SGD algorithms often depends on a bounded dissimilarity condition among the workers' local data, a condition that can drastically affect their efficiency when the workers' data are highly heterogeneous. To overcome this limitation, we introduce the \textit{dual-delayed asynchronous SGD (DuDe-ASGD)} algorithm designed to neutralize the adverse effects of data heterogeneity. DuDe-ASGD makes full use of stale stochastic gradients from all workers during asynchronous training, leading to two distinct time lags in the model parameters and data samples utilized in the server's iterations. Furthermore, by adopting an incremental aggregation strategy, DuDe-ASGD maintains a per-iteration computational cost that is on par with traditional asynchronous SGD algorithms. Our analysis demonstrates that DuDe-ASGD achieves a near-minimax-optimal convergence rate for smooth nonconvex problems, even when the data across workers are extremely heterogeneous. Numerical experiments indicate that DuDe-ASGD compares favorably with existing asynchronous and synchronous SGD-based algorithms.


Linear Speedup of Incremental Aggregated Gradient Methods on Streaming Data

arXiv.org Artificial Intelligence

This paper considers a type of incremental aggregated gradient (IAG) method for large-scale distributed optimization. The IAG method is well suited for the parameter server architecture as the latter can easily aggregate potentially staled gradients contributed by workers. Although the convergence of IAG in the case of deterministic gradient is well known, there are only a few results for the case of its stochastic variant based on streaming data. Considering strongly convex optimization, this paper shows that the streaming IAG method achieves linear speedup when the workers are updating frequently enough, even if the data sample distribution across workers are heterogeneous. We show that the expected squared distance to optimal solution decays at O((1+T)/(nt)), where $n$ is the number of workers, t is the iteration number, and T/n is the update frequency of workers. Our analysis involves careful treatments of the conditional expectations with staled gradients and a recursive system with both delayed and noise terms, which are new to the analysis of IAG-type algorithms. Numerical results are presented to verify our findings.


Distributionally Robust Graph Learning from Smooth Signals under Moment Uncertainty

arXiv.org Artificial Intelligence

We consider the problem of learning a graph from a finite set of noisy graph signal observations, the goal of which is to find a smooth representation of the graph signal. Such a problem is motivated by the desire to infer relational structure in large datasets and has been extensively studied in recent years. Most existing approaches focus on learning a graph on which the observed signals are smooth. However, the learned graph is prone to overfitting, as it does not take the unobserved signals into account. To address this issue, we propose a novel graph learning model based on the distributionally robust optimization methodology, which aims to identify a graph that not only provides a smooth representation of but is also robust against uncertainties in the observed signals. On the statistics side, we establish out-of-sample performance guarantees for our proposed model. On the optimization side, we show that under a mild assumption on the graph signal distribution, our proposed model admits a smooth non-convex optimization formulation. We then develop a projected gradient method to tackle this formulation and establish its convergence guarantees. Our formulation provides a new perspective on regularization in the graph learning setting. Moreover, extensive numerical experiments on both synthetic and real-world data show that our model has comparable yet more robust performance across different populations of observed signals than existing non-robust models according to various metrics.