Goto

Collaborating Authors

 Wang, Xiaojie


Robot Skin with Touch and Bend Sensing using Electrical Impedance Tomography

arXiv.org Artificial Intelligence

Flexible electronic skins that simultaneously sense touch and bend are desired in several application areas, such as to cover articulated robot structures. This paper introduces a flexible tactile sensor based on Electrical Impedance Tomography (EIT), capable of simultaneously detecting and measuring contact forces and flexion of the sensor. The sensor integrates a magnetic hydrogel composite and utilizes EIT to reconstruct internal conductivity distributions. Real-time estimation is achieved through the one-step Gauss-Newton method, which dynamically updates reference voltages to accommodate sensor deformation. A convolutional neural network is employed to classify interactions, distinguishing between touch, bending, and idle states using pre-reconstructed images. Experimental results demonstrate an average touch localization error of 5.4 mm (SD 2.2 mm) and average bending angle estimation errors of 1.9$^\circ$ (SD 1.6$^\circ$). The proposed adaptive reference method effectively distinguishes between single- and multi-touch scenarios while compensating for deformation effects. This makes the sensor a promising solution for multimodal sensing in robotics and human-robot collaboration.


Collab-Overcooked: Benchmarking and Evaluating Large Language Models as Collaborative Agents

arXiv.org Artificial Intelligence

Large language models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks. This paper proposes a new LLM-powered Multi-Agent System (LLM-MAS) benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments. Collab-Overcooked extends existing benchmarks from two novel perspectives. First, it provides a multi-agent framework supporting diverse tasks and objectives and encourages collaboration through natural language communication. Second, it introduces a spectrum of process-oriented evaluation metrics to assess the fine-grained collaboration capabilities of different LLM agents, a dimension often overlooked in prior work. We conduct extensive experiments over 10 popular LLMs and show that, while the LLMs present a strong ability in goal interpretation, there is a significant discrepancy in active collaboration and continuous adaption that are critical for efficiently fulfilling complicated tasks. Notably, we highlight the strengths and weaknesses in LLM-MAS and provide insights for improving and evaluating LLM-MAS on a unified and open-sourced benchmark. Environments, 30 open-ended tasks, and an integrated evaluation package are now publicly available at https://github.com/YusaeMeow/Collab-Overcooked.


Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks

arXiv.org Artificial Intelligence

The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the training dynamics inside a model remain to be explored. In this work, we develop an interpretable method for fine-tuning and reveal the mechanism behind learning. We first propose the concept of node redundancy as an extension of intrinsic dimension and explain the idea behind circuit discovery from a fresh view. Based on the theory, we propose circuit-tuning, a two-stage algorithm that iteratively performs circuit discovery to mask out irrelevant edges and updates the remaining parameters responsible for a specific task. Experiments show that our method not only improves performance on a wide range of tasks but is also scalable while preserving general capabilities. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.


Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a subspace regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix null space. Experimental results on commonly used LLM finetuning tasks reveal that CLoRA significantly outperforms existing LoRA subsequent methods on both in-domain and outdomain evaluations, highlighting the superority of CLoRA as a effective parameter-efficient finetuning method with catastrophic forgetting mitigating. Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.


Phased Instruction Fine-Tuning for Large Language Models

arXiv.org Artificial Intelligence

Instruction Fine-Tuning enhances pre-trained language models from basic next-word prediction to complex instruction-following. However, existing One-off Instruction Fine-Tuning (One-off IFT) method, applied on a diverse instruction, may not effectively boost models' adherence to instructions due to the simultaneous handling of varying instruction complexities. To improve this, Phased Instruction Fine-Tuning (Phased IFT) is proposed, based on the idea that learning to follow instructions is a gradual process. It assesses instruction difficulty using GPT-4, divides the instruction data into subsets of increasing difficulty, and uptrains the model sequentially on these subsets. Experiments with Llama-2 7B/13B/70B, Llama3 8/70B and Mistral-7B models using Alpaca data show that Phased IFT significantly outperforms One-off IFT, supporting the progressive alignment hypothesis and providing a simple and efficient way to enhance large language models. Codes and datasets from our experiments are freely available at https://github.com/xubuvd/PhasedSFT.


A Survey on Trustworthy Edge Intelligence: From Security and Reliability To Transparency and Sustainability

arXiv.org Artificial Intelligence

Edge Intelligence (EI) integrates Edge Computing (EC) and Artificial Intelligence (AI) to push the capabilities of AI to the network edge for real-time, efficient and secure intelligent decision-making and computation. However, EI faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EI in the eyes of stakeholders. This survey comprehensively summarizes the characteristics, architecture, technologies, and solutions of trustworthy EI. Specifically, we first emphasize the need for trustworthy EI in the context of the trend toward large models. We then provide an initial definition of trustworthy EI, explore its key characteristics and give a multi-layered architecture for trustworthy EI. Then, we summarize several important issues that hinder the achievement of trustworthy EI. Subsequently, we present enabling technologies for trustworthy EI systems and provide an in-depth literature review of the state-of-the-art solutions for realizing the trustworthiness of EI. Finally, we discuss the corresponding research challenges and open issues.


Joint User Association, Interference Cancellation and Power Control for Multi-IRS Assisted UAV Communications

arXiv.org Artificial Intelligence

Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way. Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs, whereas it is extremely challenging for joint multi-IRS multi-user association in UAV communications with constrained reflecting resources and dynamic scenarios. To address the aforementioned challenges, we propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation to maximize system energy efficiency. We first propose an inverse soft-Q learning-based algorithm to optimize multi-IRS multi-user association. Then, SCA and Dinkelbach-based algorithm are leveraged to optimize UAV trajectory followed by the optimization of SIC decoding order scheduling and power allocation. Finally, theoretical analysis and performance results show significant advantages of the designed algorithm in convergence rate and energy efficiency.


Explicit Alignment and Many-to-many Entailment Based Reasoning for Conversational Machine Reading

arXiv.org Artificial Intelligence

For decision-making, one common approach first The Conversational Machine Reading (CMR) task segments the document into many text spans at (Saeidi et al., 2018) requires an agent to answer an different granularity levels (e.g., sentences or Elementary initial question from users through multi-turn dialogue Discourse Units (EDUs)). Then complex interactions based on a given document. As modules are adopted to predict the entailment state shown in Figure 1, a typical process involves two for each document span based on user scenario and steps, (1) the agent first makes a decision classification previous dialogue history (both are user-provided among IRRELEVANT, YES, NO and MORE, information). Finally, decisions are made based on (2) if the decision is MORE, the agent generates a the entailment states of all document spans. One question to clarify an unmentioned condition in the effective module for predicting entailment states is given document, otherwise responds directly. Recent transformer blocks (Vaswani et al., 2017), which research (Verma et al., 2020; Lawrence et al., are widely adopted (Gao et al., 2020b; Ouyang 2019; Zhong and Zettlemoyer, 2019; Gao et al., et al., 2021; Zhang et al., 2022). However, the 2020a; Gao et al., 2020b; Ouyang et al., 2021; aforementioned approach has overlooked the explicit Zhang et al., 2022) has explored how to improve alignment between the document and the userprovided the abilities of decision-making and question generation.


A Task-oriented Dialog Model with Task-progressive and Policy-aware Pre-training

arXiv.org Artificial Intelligence

Pre-trained conversation models (PCMs) have achieved promising progress in recent years. However, existing PCMs for Task-oriented dialog (TOD) are insufficient for capturing the sequential nature of the TOD-related tasks, as well as for learning dialog policy information. To alleviate these problems, this paper proposes a task-progressive PCM with two policy-aware pre-training tasks. The model is pre-trained through three stages where TOD-related tasks are progressively employed according to the task logic of the TOD system. A global policy consistency task is designed to capture the multi-turn dialog policy sequential relation, and an act-based contrastive learning task is designed to capture similarities among samples with the same dialog policy. Our model achieves better results on both MultiWOZ and In-Car end-to-end dialog modeling benchmarks with only 18% parameters and 25% pre-training data compared to the previous state-of-the-art PCM, GALAXY. We make our code and data publicly available.


AKEM: Aligning Knowledge Base to Queries with Ensemble Model for Entity Recognition and Linking

arXiv.org Artificial Intelligence

This paper presents a novel approach to address the Entity Recognition and Linking Challenge at NLPCC 2015. The task involves extracting named entity mentions from short search queries and linking them to entities within a reference Chinese knowledge base. To tackle this problem, we first expand the existing knowledge base and utilize external knowledge to identify candidate entities, thereby improving the recall rate. Next, we extract features from the candidate entities and utilize Support Vector Regression and Multiple Additive Regression Tree as scoring functions to filter the results. Additionally, we apply rules to further refine the results and enhance precision. Our method is computationally efficient and achieves an F1 score of 0.535.