Wang, Xiaofeng
DiffTune-MPC: Closed-Loop Learning for Model Predictive Control
Tao, Ran, Cheng, Sheng, Wang, Xiaofeng, Wang, Shenlong, Hovakimyan, Naira
Model predictive control (MPC) has been applied to many platforms in robotics and autonomous systems for its capability to predict a system's future behavior while incorporating constraints that a system may have. To enhance the performance of a system with an MPC controller, one can manually tune the MPC's cost function. However, it can be challenging due to the possibly high dimension of the parameter space as well as the potential difference between the open-loop cost function in MPC and the overall closed-loop performance metric function. This paper presents DiffTune-MPC, a novel learning method, to learn the cost function of an MPC in a closed-loop manner. The proposed framework is compatible with the scenario where the time interval for performance evaluation and MPC's planning horizon have different lengths. We show the auxiliary problem whose solution admits the analytical gradients of MPC and discuss its variations in different MPC settings. Simulation results demonstrate the capability of DiffTune-MPC and illustrate the influence of constraints (from actuation limits) on learning.
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
Wen, Licheng, Yang, Xuemeng, Fu, Daocheng, Wang, Xiaofeng, Cai, Pinlong, Li, Xin, Ma, Tao, Li, Yingxuan, Xu, Linran, Shang, Dengke, Zhu, Zheng, Sun, Shaoyan, Bai, Yeqi, Cai, Xinyu, Dou, Min, Hu, Shuanglu, Shi, Botian, Qiao, Yu
The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V(ision), and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: \url{https://github.com/PJLab-ADG/GPT4V-AD-Exploration}
SSL-Cleanse: Trojan Detection and Mitigation in Self-Supervised Learning
Zheng, Mengxin, Xue, Jiaqi, Wang, Zihao, Chen, Xun, Lou, Qian, Jiang, Lei, Wang, Xiaofeng
Self-supervised learning (SSL) is a prevalent approach for encoding data representations. Using a pre-trained SSL image encoder and subsequently training a downstream classifier, impressive performance can be achieved on various tasks with very little labeled data. The growing adoption of SSL has led to an increase in security research on SSL encoders and associated Trojan attacks. Trojan attacks embedded in SSL encoders can operate covertly, spreading across multiple users and devices. The presence of backdoor behavior in Trojaned encoders can inadvertently be inherited by downstream classifiers, making it even more difficult to detect and mitigate the threat. Although current Trojan detection methods in supervised learning can potentially safeguard SSL downstream classifiers, identifying and addressing triggers in the SSL encoder before its widespread dissemination is a challenging task. This challenge arises because downstream tasks might be unknown, dataset labels may be unavailable, and the original unlbeled training dataset might be inaccessible during Trojan detection in SSL encoders. We introduce SSL-Cleanse as a solution to identify and mitigate backdoor threats in SSL encoders. We evaluated SSL-Cleanse on various datasets using 1200 encoders, achieving an average detection success rate of 82.2% on ImageNet-100. After mitigating backdoors, on average, backdoored encoders achieve 0.3% attack success rate without great accuracy loss, proving the effectiveness of SSL-Cleanse.
Large Language Model Soft Ideologization via AI-Self-Consciousness
Zhou, Xiaotian, Wang, Qian, Wang, Xiaofeng, Tang, Haixu, Liu, Xiaozhong
Large language models (LLMs) have demonstrated human-level performance on a vast spectrum of natural language tasks. However, few studies have addressed the LLM threat and vulnerability from an ideology perspective, especially when they are increasingly being deployed in sensitive domains, e.g., elections and education. In this study, we explore the implications of GPT soft ideologization through the use of AI-self-consciousness. By utilizing GPT self-conversations, AI can be granted a vision to "comprehend" the intended ideology, and subsequently generate finetuning data for LLM ideology injection. When compared to traditional government ideology manipulation techniques, such as information censorship, LLM ideologization proves advantageous; it is easy to implement, cost-effective, and powerful, thus brimming with risks.
Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models
Liu, Jiawei, Kang, Yangyang, Tang, Di, Song, Kaisong, Sun, Changlong, Wang, Xiaofeng, Lu, Wei, Liu, Xiaozhong
Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.
FE-TCM: Filter-Enhanced Transformer Click Model for Web Search
Wang, Yingfei, Liu, Jianping, Wang, Jian, Wang, Xiaofeng, Wang, Meng, Chu, Xintao
Constructing click models and extracting implicit relevance feedback information from the interaction between users and search engines are very important to improve the ranking of search results. Using neural network to model users' click behaviors has become one of the effective methods to construct click models. In this paper, We use Transformer as the backbone network of feature extraction, add filter layer innovatively, and propose a new Filter-Enhanced Transformer Click Model (FE-TCM) for web search. Firstly, in order to reduce the influence of noise on user behavior data, we use the learnable filters to filter log noise. Secondly, following the examination hypothesis, we model the attraction estimator and examination predictor respectively to output the attractiveness scores and examination probabilities. A novel transformer model is used to learn the deeper representation among different features. Finally, we apply the combination functions to integrate attractiveness scores and examination probabilities into the click prediction. From our experiments on two real-world session datasets, it is proved that FE-TCM outperforms the existing click models for the click prediction.
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Zhu, Rui, Tang, Di, Tang, Siyuan, Tao, Guanhong, Ma, Shiqing, Wang, Xiaofeng, Tang, Haixu
Most existing methods to detect backdoored machine learning (ML) models take one of the two approaches: trigger inversion (aka. reverse engineer) and weight analysis (aka. model diagnosis). In particular, the gradient-based trigger inversion is considered to be among the most effective backdoor detection techniques, as evidenced by the TrojAI competition, Trojan Detection Challenge and backdoorBench. However, little has been done to understand why this technique works so well and, more importantly, whether it raises the bar to the backdoor attack. In this paper, we report the first attempt to answer this question by analyzing the change rate of the backdoored model around its trigger-carrying inputs. Our study shows that existing attacks tend to inject the backdoor characterized by a low change rate around trigger-carrying inputs, which are easy to capture by gradient-based trigger inversion. In the meantime, we found that the low change rate is not necessary for a backdoor attack to succeed: we design a new attack enhancement called \textit{Gradient Shaping} (GRASP), which follows the opposite direction of adversarial training to reduce the change rate of a backdoored model with regard to the trigger, without undermining its backdoor effect. Also, we provide a theoretic analysis to explain the effectiveness of this new technique and the fundamental weakness of gradient-based trigger inversion. Finally, we perform both theoretical and experimental analysis, showing that the GRASP enhancement does not reduce the effectiveness of the stealthy attacks against the backdoor detection methods based on weight analysis, as well as other backdoor mitigation methods without using detection.
Context-aware Heterogeneous Graph Attention Network for User Behavior Prediction in Local Consumer Service Platform
Zhu, Peiyuan, Wang, Xiaofeng, Sang, Zisen, Yuan, Aiquan, Cao, Guodong
As a new type of e-commerce platform developed in recent years, local consumer service platform provides users with software to consume service to the nearby store or to the home, such as Groupon and Koubei. Different from other common e-commerce platforms, the behavior of users on the local consumer service platform is closely related to their real-time local context information. Therefore, building a context-aware user behavior prediction system is able to provide both merchants and users better service in local consumer service platforms. However, most of the previous work just treats the contextual information as an ordinary feature into the prediction model to obtain the prediction list under a specific context, which ignores the fact that the interest of a user in different contexts is often significantly different. Hence, in this paper, we propose a context-aware heterogeneous graph attention network (CHGAT) to dynamically generate the representation of the user and to estimate the probability for future behavior. Specifically, we first construct the meta-path based heterogeneous graphs with the historical behaviors from multiple sources and comprehend heterogeneous vertices in the graph with a novel unified knowledge representing approach. Next, a multi-level attention mechanism is introduced for context-aware aggregation with graph vertices, which contains the vertex-level attention network and the path-level attention network. Both of them aim to capture the semantic correlation between information contained in the graph and the outside real-time contextual information in the search system. Then the model proposed in this paper aggregates specific graphs with their corresponding context features and obtains the representation of user interest under a specific context and input it into the prediction network to finally obtain the predicted probability of user behavior.
Understanding Membership Inferences on Well-Generalized Learning Models
Long, Yunhui, Bindschaedler, Vincent, Wang, Lei, Bu, Diyue, Wang, Xiaofeng, Tang, Haixu, Gunter, Carl A., Chen, Kai
Membership Inference Attack (MIA) determines the presence of a record in a machine learning model's training data by querying the model. Prior work has shown that the attack is feasible when the model is overfitted to its training data or when the adversary controls the training algorithm. However, when the model is not overfitted and the adversary does not control the training algorithm, the threat is not well understood. In this paper, we report a study that discovers overfitting to be a sufficient but not a necessary condition for an MIA to succeed. More specifically, we demonstrate that even a well-generalized model contains vulnerable instances subject to a new generalized MIA (GMIA). In GMIA, we use novel techniques for selecting vulnerable instances and detecting their subtle influences ignored by overfitting metrics. Specifically, we successfully identify individual records with high precision in real-world datasets by querying black-box machine learning models. Further we show that a vulnerable record can even be indirectly attacked by querying other related records and existing generalization techniques are found to be less effective in protecting the vulnerable instances. Our findings sharpen the understanding of the fundamental cause of the problem: the unique influences the training instance may have on the model.
Learning Near-Pareto-Optimal Conventions in Polynomial Time
Wang, Xiaofeng, Sandholm, Tuomas
We study how to learn to play a Pareto-optimal strict Nash equilibrium when there exist multiple equilibria and agents may have different preferences among the equilibria. We focus on repeated coordination games of non-identical interest where agents do not know the game structure up front and receive noisy payoffs. We design efficient near-optimal algorithms for both the perfect monitoring and the imperfect monitoring setting(where the agents only observe their own payoffs and the joint actions).