Goto

Collaborating Authors

 Wang, Xiaofeng


Debt Collection Negotiations with Large Language Models: An Evaluation System and Optimizing Decision Making with Multi-Agent

arXiv.org Artificial Intelligence

Debt collection negotiations (DCN) are vital for managing non-performing loans (NPLs) and reducing creditor losses. Traditional methods are labor-intensive, while large language models (LLMs) offer promising automation potential. However, prior systems lacked dynamic negotiation and real-time decision-making capabilities. This paper explores LLMs in automating DCN and proposes a novel evaluation framework with 13 metrics across 4 aspects. Our experiments reveal that LLMs tend to over-concede compared to human negotiators. To address this, we propose the Multi-Agent Debt Negotiation (MADeN) framework, incorporating planning and judging modules to improve decision rationality. We also apply post-training techniques, including DPO with rejection sampling, to optimize performance. Our studies provide valuable insights for practitioners and researchers seeking to enhance efficiency and outcomes in this domain.


Topic-FlipRAG: Topic-Orientated Adversarial Opinion Manipulation Attacks to Retrieval-Augmented Generation Models

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become essential for tasks such as question answering and content generation. However, their increasing impact on public opinion and information dissemination has made them a critical focus for security research due to inherent vulnerabilities. Previous studies have predominantly addressed attacks targeting factual or single-query manipulations. In this paper, we address a more practical scenario: topic-oriented adversarial opinion manipulation attacks on RAG models, where LLMs are required to reason and synthesize multiple perspectives, rendering them particularly susceptible to systematic knowledge poisoning. Specifically, we propose Topic-FlipRAG, a two-stage manipulation attack pipeline that strategically crafts adversarial perturbations to influence opinions across related queries. This approach combines traditional adversarial ranking attack techniques and leverages the extensive internal relevant knowledge and reasoning capabilities of LLMs to execute semantic-level perturbations. Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics, significantly impacting user information perception. Current mitigation methods cannot effectively defend against such attacks, highlighting the necessity for enhanced safeguards for RAG systems, and offering crucial insights for LLM security research.


Do Large Language Models Truly Understand Geometric Structures?

arXiv.org Artificial Intelligence

LLM-generated Answer: For triangle ABC, G is its incenter. From point G, perpendiculars are drawn to the three Since G is the incenter of triangle ABC, we know that GD is perpendicular to DC, GF is perpendicular to FC, and sides. GD is perpendicular to AC, GF is perpendicular to BC, and GE is perpendicular to GE is perpendicular to EA. AB. The length of CG is 13, and the length of CF is 12. Therefore, GD, GF, and GE are all altitudes of triangle DCF. Therefore, we can conclude that EG = 5. (Correct Answer) LLM-generated Answer: Is DG the altitude of triangle ABC? Yes, because GD is perpendicular to the side AC. Cannot be inferred, The given conditions are insufficient to determine whether they are perpendicular. LLM-generated Answer: Are DCG and CGD complementary? Yes, DCG and CGD are complementary because in triangle CDG GD is perpendicular to DC. I can differentiate my understanding of each geometric component! Within this process, identifying the geometric relationships is a ...


Buster: Implanting Semantic Backdoor into Text Encoder to Mitigate NSFW Content Generation

arXiv.org Artificial Intelligence

The rise of deep learning models in the digital era has raised substantial concerns regarding the generation of Not-Safe-for-Work (NSFW) content. Existing defense methods primarily involve model fine-tuning and post-hoc content moderation. Nevertheless, these approaches largely lack scalability in eliminating harmful content, degrade the quality of benign image generation, or incur high inference costs. To address these challenges, we propose an innovative framework named \textit{Buster}, which injects backdoors into the text encoder to prevent NSFW content generation. Buster leverages deep semantic information rather than explicit prompts as triggers, redirecting NSFW prompts towards targeted benign prompts. Additionally, Buster employs energy-based training data generation through Langevin dynamics for adversarial knowledge augmentation, thereby ensuring robustness in harmful concept definition. This approach demonstrates exceptional resilience and scalability in mitigating NSFW content. Particularly, Buster fine-tunes the text encoder of Text-to-Image models within merely five minutes, showcasing its efficiency. Our extensive experiments denote that Buster outperforms nine state-of-the-art baselines, achieving a superior NSFW content removal rate of at least 91.2\% while preserving the quality of harmless images.


RAG-WM: An Efficient Black-Box Watermarking Approach for Retrieval-Augmented Generation of Large Language Models

arXiv.org Artificial Intelligence

In recent years, tremendous success has been witnessed in Retrieval-Augmented Generation (RAG), widely used to enhance Large Language Models (LLMs) in domain-specific, knowledge-intensive, and privacy-sensitive tasks. However, attackers may steal those valuable RAGs and deploy or commercialize them, making it essential to detect Intellectual Property (IP) infringement. Most existing ownership protection solutions, such as watermarks, are designed for relational databases and texts. They cannot be directly applied to RAGs because relational database watermarks require white-box access to detect IP infringement, which is unrealistic for the knowledge base in RAGs. Meanwhile, post-processing by the adversary's deployed LLMs typically destructs text watermark information. To address those problems, we propose a novel black-box "knowledge watermark" approach, named RAG-WM, to detect IP infringement of RAGs. RAG-WM uses a multi-LLM interaction framework, comprising a Watermark Generator, Shadow LLM & RAG, and Watermark Discriminator, to create watermark texts based on watermark entity-relationship tuples and inject them into the target RAG. We evaluate RAG-WM across three domain-specific and two privacy-sensitive tasks on four benchmark LLMs. Experimental results show that RAG-WM effectively detects the stolen RAGs in various deployed LLMs. Furthermore, RAG-WM is robust against paraphrasing, unrelated content removal, knowledge insertion, and knowledge expansion attacks. Lastly, RAG-WM can also evade watermark detection approaches, highlighting its promising application in detecting IP infringement of RAG systems.


Task-Parameter Nexus: Task-Specific Parameter Learning for Model-Based Control

arXiv.org Artificial Intelligence

This paper presents the Task-Parameter Nexus (TPN), a learning-based approach for online determination of the (near-)optimal control parameters of model-based controllers (MBCs) for tracking tasks. In TPN, a deep neural network is introduced to predict the control parameters for any given tracking task at runtime, especially when optimal parameters for new tasks are not immediately available. To train this network, we constructed a trajectory bank with various speeds and curvatures that represent different motion characteristics. Then, for each trajectory in the bank, we auto-tune the optimal control parameters offline and use them as the corresponding ground truth. With this dataset, the TPN is trained by supervised learning. We evaluated the TPN on the quadrotor platform. In simulation experiments, it is shown that the TPN can predict near-optimal control parameters for a spectrum of tracking tasks, demonstrating its robust generalization capabilities to unseen tasks.


ReconDreamer: Crafting World Models for Driving Scene Reconstruction via Online Restoration

arXiv.org Artificial Intelligence

Closed-loop simulation is crucial for end-to-end autonomous driving. Existing sensor simulation methods (e.g., NeRF and 3DGS) reconstruct driving scenes based on conditions that closely mirror training data distributions. However, these methods struggle with rendering novel trajectories, such as lane changes. Recent works have demonstrated that integrating world model knowledge alleviates these issues. Despite their efficiency, these approaches still encounter difficulties in the accurate representation of more complex maneuvers, with multi-lane shifts being a notable example. Therefore, we introduce ReconDreamer, which enhances driving scene reconstruction through incremental integration of world model knowledge. Specifically, DriveRestorer is proposed to mitigate artifacts via online restoration. This is complemented by a progressive data update strategy designed to ensure high-quality rendering for more complex maneuvers. To the best of our knowledge, ReconDreamer is the first method to effectively render in large maneuvers. Experimental results demonstrate that ReconDreamer outperforms Street Gaussians in the NTA-IoU, NTL-IoU, and FID, with relative improvements by 24.87%, 6.72%, and 29.97%. Furthermore, ReconDreamer surpasses DriveDreamer4D with PVG during large maneuver rendering, as verified by a relative improvement of 195.87% in the NTA-IoU metric and a comprehensive user study.


Layer-wise Importance Matters: Less Memory for Better Performance in Parameter-efficient Fine-tuning of Large Language Models

arXiv.org Artificial Intelligence

Parameter-Efficient Fine-Tuning (PEFT) methods have gained significant popularity for adapting pre-trained Large Language Models (LLMs) to downstream tasks, primarily due to their potential to significantly reduce memory and computational overheads. However, a common limitation in most PEFT approaches is their application of a uniform architectural design across all layers. This uniformity involves identical trainable modules and ignores the varying importance of each layer, leading to sub-optimal fine-tuning results. To overcome the above limitation and obtain better performance, we develop a novel approach, Importance-aware Sparse Tuning (IST), to fully utilize the inherent sparsity and select the most important subset of full layers with effective layer-wise importance scoring. The proposed IST is a versatile and plug-and-play technique compatible with various PEFT methods that operate on a per-layer basis. By leveraging the estimated importance scores, IST dynamically updates these selected layers in PEFT modules, leading to reduced memory demands. We further provide theoretical proof of convergence and empirical evidence of superior performance to demonstrate the advantages of IST over uniform updating strategies. Extensive experiments on a range of LLMs, PEFTs, and downstream tasks substantiate the effectiveness of our proposed method, showcasing IST's capacity to enhance existing layer-based PEFT methods. Our code is available at https://github.com/Kaiseem/IST.


Weak-to-Strong Preference Optimization: Stealing Reward from Weak Aligned Model

arXiv.org Artificial Intelligence

Aligning language models (LMs) with human preferences has become a key area of research, enabling these models to meet diverse user needs better. Inspired by weak-to-strong generalization, where a strong LM fine-tuned on labels generated by a weaker model can consistently outperform its weak supervisor, we extend this idea to model alignment. In this work, we observe that the alignment behavior in weaker models can be effectively transferred to stronger models and even exhibit an amplification effect. Based on this insight, we propose a method called Weak-to-Strong Preference Optimization (WSPO), which achieves strong model alignment by learning the distribution differences before and after the alignment of the weak model. Experiments demonstrate that WSPO delivers outstanding performance, improving the win rate of Qwen2-7B-Instruct on Arena-Hard from 39.70 to 49.60, achieving a remarkable 47.04 length-controlled win rate on AlpacaEval 2, and scoring 7.33 on MT-bench. Our results suggest that using the weak model to elicit a strong model with a high alignment ability is feasible.


Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering

arXiv.org Artificial Intelligence

In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries. The conventional retrieval methods in retrieval-augmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance. We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG). Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and inter-issue relations. During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers. This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation. Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU. Our method has been deployed within LinkedIn's customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%.