Wang, Weiming
ForceMimic: Force-Centric Imitation Learning with Force-Motion Capture System for Contact-Rich Manipulation
Liu, Wenhai, Wang, Junbo, Wang, Yiming, Wang, Weiming, Lu, Cewu
In most contact-rich manipulation tasks, humans apply time-varying forces to the target object, compensating for inaccuracies in the vision-guided hand trajectory. However, current robot learning algorithms primarily focus on trajectory-based policy, with limited attention given to learning force-related skills. To address this limitation, we introduce ForceMimic, a force-centric robot learning system, providing a natural, force-aware and robot-free robotic demonstration collection system, along with a hybrid force-motion imitation learning algorithm for robust contact-rich manipulation. Using the proposed ForceCapture system, an operator can peel a zucchini in 5 minutes, while force-feedback teleoperation takes over 13 minutes and struggles with task completion. With the collected data, we propose HybridIL to train a force-centric imitation learning model, equipped with hybrid force-position control primitive to fit the predicted wrench-position parameters during robot execution. Experiments demonstrate that our approach enables the model to learn a more robust policy under the contact-rich task of vegetable peeling, increasing the success rates by 54.5% relatively compared to state-of-the-art pure-vision-based imitation learning. Hardware, code, data and more results would be open-sourced on the project website at https://forcemimic.github.io.
Lost in UNet: Improving Infrared Small Target Detection by Underappreciated Local Features
Quan, Wuzhou, Zhao, Wei, Wang, Weiming, Xie, Haoran, Wang, Fu Lee, Wei, Mingqiang
Many targets are often very small in infrared images due to the long-distance imaging meachnism. UNet and its variants, as popular detection backbone networks, downsample the local features early and cause the irreversible loss of these local features, leading to both the missed and false detection of small targets in infrared images. We propose HintU, a novel network to recover the local features lost by various UNet-based methods for effective infrared small target detection. HintU has two key contributions. First, it introduces the "Hint" mechanism for the first time, i.e., leveraging the prior knowledge of target locations to highlight critical local features. Second, it improves the mainstream UNet-based architecture to preserve target pixels even after downsampling. HintU can shift the focus of various networks (e.g., vanilla UNet, UNet++, UIUNet, MiM+, and HCFNet) from the irrelevant background pixels to a more restricted area from the beginning. Experimental results on three datasets NUDT-SIRST, SIRSTv2 and IRSTD1K demonstrate that HintU enhances the performance of existing methods with only an additional 1.88 ms cost (on RTX Titan). Additionally, the explicit constraints of HintU enhance the generalization ability of UNet-based methods. Code is available at https://github.com/Wuzhou-Quan/HintU.
Function based sim-to-real learning for shape control of deformable free-form surfaces
Tian, Yingjun, Fang, Guoxin, Su, Renbo, Wang, Weiming, Gill, Simeon, Weightman, Andrew, Wang, Charlie C. L.
For the shape control of deformable free-form surfaces, simulation plays a crucial role in establishing the mapping between the actuation parameters and the deformed shapes. The differentiation of this forward kinematic mapping is usually employed to solve the inverse kinematic problem for determining the actuation parameters that can realize a target shape. However, the free-form surfaces obtained from simulators are always different from the physically deformed shapes due to the errors introduced by hardware and the simplification adopted in physical simulation. To fill the gap, we propose a novel deformation function based sim-to-real learning method that can map the geometric shape of a simulated model into its corresponding shape of the physical model. Unlike the existing sim-to-real learning methods that rely on completely acquired dense markers, our method accommodates sparsely distributed markers and can resiliently use all captured frames -- even for those in the presence of missing markers. To demonstrate its effectiveness, our sim-to-real method has been integrated into a neural network-based computational pipeline designed to tackle the inverse kinematic problem on a pneumatically actuated deformable mannequin.
RPMArt: Towards Robust Perception and Manipulation for Articulated Objects
Wang, Junbo, Liu, Wenhai, Yu, Qiaojun, You, Yang, Liu, Liu, Wang, Weiming, Lu, Cewu
Articulated objects are commonly found in daily life. It is essential that robots can exhibit robust perception and manipulation skills for articulated objects in real-world robotic applications. However, existing methods for articulated objects insufficiently address noise in point clouds and struggle to bridge the gap between simulation and reality, thus limiting the practical deployment in real-world scenarios. To tackle these challenges, we propose a framework towards Robust Perception and Manipulation for Articulated Objects (RPMArt), which learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud. Our primary contribution is a Robust Articulation Network (RoArtNet) that is able to predict both joint parameters and affordable points robustly by local feature learning and point tuple voting. Moreover, we introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer. Finally, with the estimated affordable point and articulation joint constraint, the robot can generate robust actions to manipulate articulated objects. After learning only from synthetic data, RPMArt is able to transfer zero-shot to real-world articulated objects. Experimental results confirm our approach's effectiveness, with our framework achieving state-of-the-art performance in both noise-added simulation and real-world environments. The code and data will be open-sourced for reproduction. More results are published on the project website at https://r-pmart.github.io .
GAMMA: Generalizable Articulation Modeling and Manipulation for Articulated Objects
Yu, Qiaojun, Wang, Junbo, Liu, Wenhai, Hao, Ce, Liu, Liu, Shao, Lin, Wang, Weiming, Lu, Cewu
Articulated objects like cabinets and doors are widespread in daily life. However, directly manipulating 3D articulated objects is challenging because they have diverse geometrical shapes, semantic categories, and kinetic constraints. Prior works mostly focused on recognizing and manipulating articulated objects with specific joint types. They can either estimate the joint parameters or distinguish suitable grasp poses to facilitate trajectory planning. Although these approaches have succeeded in certain types of articulated objects, they lack generalizability to unseen objects, which significantly impedes their application in broader scenarios. In this paper, we propose a novel framework of Generalizable Articulation Modeling and Manipulating for Articulated Objects (GAMMA), which learns both articulation modeling and grasp pose affordance from diverse articulated objects with different categories. In addition, GAMMA adopts adaptive manipulation to iteratively reduce the modeling errors and enhance manipulation performance. We train GAMMA with the PartNet-Mobility dataset and evaluate with comprehensive experiments in SAPIEN simulation and real-world Franka robot. Results show that GAMMA significantly outperforms SOTA articulation modeling and manipulation algorithms in unseen and cross-category articulated objects. We will open-source all codes and datasets in both simulation and real robots for reproduction in the final version. Images and videos are published on the project website at: http://sites.google.com/view/gamma-articulation
Low-Cost Exoskeletons for Learning Whole-Arm Manipulation in the Wild
Fang, Hongjie, Fang, Hao-Shu, Wang, Yiming, Ren, Jieji, Chen, Jingjing, Zhang, Ruo, Wang, Weiming, Lu, Cewu
While humans can use parts of their arms other than the hands for manipulations like gathering and supporting, whether robots can effectively learn and perform the same type of operations remains relatively unexplored. As these manipulations require joint-level control to regulate the complete poses of the robots, we develop AirExo, a low-cost, adaptable, and portable dual-arm exoskeleton, for teleoperation and demonstration collection. As collecting teleoperated data is expensive and time-consuming, we further leverage AirExo to collect cheap in-the-wild demonstrations at scale. Under our in-the-wild learning framework, we show that with only 3 minutes of the teleoperated demonstrations, augmented by diverse and extensive in-the-wild data collected by AirExo, robots can learn a policy that is comparable to or even better than one learned from teleoperated demonstrations lasting over 20 minutes. Experiments demonstrate that our approach enables the model to learn a more general and robust policy across the various stages of the task, enhancing the success rates in task completion even with the presence of disturbances. Project website: https://airexo.github.io/
CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation
You, Yang, He, Wenhao, Liu, Jin, Xiong, Hongkai, Wang, Weiming, Lu, Cewu
Object pose estimation constitutes a critical area within the domain of 3D vision. While contemporary state-of-the-art methods that leverage real-world pose annotations have demonstrated commendable performance, the procurement of such real-world training data incurs substantial costs. This paper focuses on a specific setting wherein only 3D CAD models are utilized as a priori knowledge, devoid of any background or clutter information. We introduce a novel method, CPPF++, designed for sim-to-real pose estimation. This method builds upon the foundational point-pair voting scheme of CPPF, reconceptualizing it through a probabilistic lens. To address the challenge of voting collision, we model voting uncertainty by estimating the probabilistic distribution of each point pair within the canonical space. This approach is further augmented by iterative noise filtering, employed to eradicate votes associated with backgrounds or clutters. Additionally, we enhance the context provided by each voting unit by introducing $N$-point tuples. In conjunction with this methodological contribution, we present a new category-level pose estimation dataset, DiversePose 300. This dataset is specifically crafted to facilitate a more rigorous evaluation of current state-of-the-art methods, encompassing a broader and more challenging array of real-world scenarios. Empirical results substantiate the efficacy of our proposed method, revealing a significant reduction in the disparity between simulation and real-world performance.
One-Shot General Object Localization
You, Yang, Miao, Zhuochen, Xiong, Kai, Wang, Weiming, Lu, Cewu
This paper presents a general one-shot object localization algorithm called OneLoc. Current one-shot object localization or detection methods either rely on a slow exhaustive feature matching process or lack the ability to generalize to novel objects. In contrast, our proposed OneLoc algorithm efficiently finds the object center and bounding box size by a special voting scheme. To keep our method scale-invariant, only unit center offset directions and relative sizes are estimated. A novel dense equalized voting module is proposed to better locate small texture-less objects. Experiments show that the proposed method achieves state-of-the-art overall performance on two datasets: OnePose dataset and LINEMOD dataset. In addition, our method can also achieve one-shot multi-instance detection and non-rigid object localization. Code repository: https://github.com/qq456cvb/OneLoc.
Combinational Q-Learning for Dou Di Zhu
You, Yang, Li, Liangwei, Guo, Baisong, Wang, Weiming, Lu, Cewu
Deep reinforcement learning (DRL) has gained a lot of attention in recent years, and has been proven to be able to play Atari games and Go at or above human levels. However, those games are assumed to have a small fixed number of actions and could be trained with a simple CNN network. In this paper, we study a special class of Asian popular card games called Dou Di Zhu, in which two adversarial groups of agents must consider numerous card combinations at each time step, leading to huge number of actions. We propose a novel method to handle combinatorial actions, which we call combinational Q-learning (CQL). We employ a two-stage network to reduce action space and also leverage order-invariant max-pooling operations to extract relationships between primitive actions. Results show that our method prevails over state-of-the art methods like naive Q-learning and A3C. We develop an easy-to-use card game environments and train all agents adversarially from sractch, with only knowledge of game rules and verify that our agents are comparative to humans. Our code to reproduce all reported results will be available online.