Wang, Wan
Collaborating in a competitive world: Heterogeneous Multi-Agent Decision Making in Symbiotic Supply Chain Environments
Wang, Wan, Wang, Haiyan, Sobey, Adam J.
Supply networks require collaboration in a competitive environment. To achieve this, nodes in the network often form symbiotic relationships as they can be adversely effected by the closure of companies in the network, especially where products are niche. However, balancing support for other nodes in the network against profit is challenging. Agents are increasingly being explored to define optimal strategies in these complex networks. However, to date much of the literature focuses on homogeneous agents where a single policy controls all of the nodes. This isn't realistic for many supply chains as this level of information sharing would require an exceptionally close relationship. This paper therefore compares the behaviour of this type of agent to a heterogeneous structure, where the agents each have separate polices, to solve the product ordering and pricing problem. An approach to reward sharing is developed that doesn't require sharing profit. The homogenous and heterogeneous agents exhibit different behaviours, with the homogenous retailer retaining high inventories and witnessing high levels of backlog while the heterogeneous agents show a typical order strategy. This leads to the heterogeneous agents mitigating the bullwhip effect whereas the homogenous agents do not. In the high demand environment, the agent architecture dominates performance with the Soft Actor-Critic (SAC) agents outperforming the Proximal Policy Optimisation (PPO) agents. Here, the factory controls the supply chain. In the low demand environment the homogenous agents outperform the heterogeneous agents. Control of the supply chain shifts significantly, with the retailer outperforming the factory by a significant margin.
Agent based modelling for continuously varying supply chains
Wang, Wan, Wang, Haiyan, Sobey, Adam J.
Problem definition: Supply chains are constantly evolving networks. Reinforcement learning is increasingly proposed as a solution to provide optimal control of these networks. Academic/practical: However, learning in continuously varying environments remains a challenge in the reinforcement learning literature. Methodology: This paper therefore seeks to address whether agents can control varying supply chain problems, transferring learning between environments that require different strategies and avoiding catastrophic forgetting of tasks that have not been seen in a while. To evaluate this approach, two state-of-the-art Reinforcement Learning (RL) algorithms are compared: an actor-critic learner, Proximal Policy Optimisation (PPO), and a Recurrent Proximal Policy Optimisation (RPPO), PPO with a Long Short-Term Memory (LSTM) layer, which is showing popularity in online learning environments. Results: First these methods are compared on six sets of environments with varying degrees of stochasticity. The results show that more lean strategies adopted in Batch environments are different from those adopted in Stochastic environments with varying products. The methods are also compared on various continuous supply chain scenarios, where the PPO agents are shown to be able to adapt through continuous learning when the tasks are similar but show more volatile performance when changing between the extreme tasks. However, the RPPO, with an ability to remember histories, is able to overcome this to some extent and takes on a more realistic strategy. Managerial implications: Our results provide a new perspective on the continuously varying supply chain, the cooperation and coordination of agents are crucial for improving the overall performance in uncertain and semi-continuous non-stationary supply chain environments without the need to retrain the environment as the demand changes.