Wang, Qifan
FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning
Zhang, Zhuo, Zhang, Jingyuan, Huang, Jintao, Qu, Lizhen, Zhang, Hongzhi, Wang, Qifan, Zhou, Xun, Xu, Zenglin
Instruction tuning has been identified as a crucial technique for optimizing the performance of large language models (LLMs) in generating human-aligned responses. Nonetheless, gathering diversified and superior-quality instruction data for such tuning presents notable obstacles, especially in domains with rigid privacy provisions. Federated instruction tuning (FedIT) has emerged as a promising solution, by consolidating collaborative training across multiple data owners, thereby resulting in a privacy-preserving learning model. However, FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks. In this paper, we propose a novel federated algorithm, FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning. FewFedPITcomprises three vital components on the client side: (1) synthetic data generation, which utilizes LLMs' in-context learning capacity to generate synthetic data autonomously, thus expanding the local database; (2) parameter isolation training, which individually updates the public parameters in the synthetic data and the private parameters in the local data, consequently mitigating the noise impact of the synthetic data; (3) local aggregation sharing, which mixes public and private parameters before uploading, effectively preventing data extraction attacks. Extensive experiments on three open-source datasets demonstrate the effectiveness of FewFedPITin, enhancing privacy preservation and improving federated few-shot performance.
InternalInspector $I^2$: Robust Confidence Estimation in LLMs through Internal States
Beigi, Mohammad, Shen, Ying, Yang, Runing, Lin, Zihao, Wang, Qifan, Mohan, Ankith, He, Jianfeng, Jin, Ming, Lu, Chang-Tien, Huang, Lifu
Despite their vast capabilities, Large Language Models (LLMs) often struggle with generating reliable outputs, frequently producing high-confidence inaccuracies known as hallucinations. Addressing this challenge, our research introduces InternalInspector, a novel framework designed to enhance confidence estimation in LLMs by leveraging contrastive learning on internal states including attention states, feed-forward states, and activation states of all layers. Unlike existing methods that primarily focus on the final activation state, InternalInspector conducts a comprehensive analysis across all internal states of every layer to accurately identify both correct and incorrect prediction processes. By benchmarking InternalInspector against existing confidence estimation methods across various natural language understanding and generation tasks, including factual question answering, commonsense reasoning, and reading comprehension, InternalInspector achieves significantly higher accuracy in aligning the estimated confidence scores with the correctness of the LLM's predictions and lower calibration error. Furthermore, InternalInspector excels at HaluEval, a hallucination detection benchmark, outperforming other internal-based confidence estimation methods in this task.
HYDRA: Model Factorization Framework for Black-Box LLM Personalization
Zhuang, Yuchen, Sun, Haotian, Yu, Yue, Qiang, Rushi, Wang, Qifan, Zhang, Chao, Dai, Bo
Personalization has emerged as a critical research area in modern intelligent systems, focusing on mining users' behavioral history and adapting to their preferences for delivering tailored experiences. Despite the remarkable few-shot capabilities exhibited by black-box large language models (LLMs), the inherent opacity of their model parameters presents significant challenges in aligning the generated output with individual expectations. Existing solutions have primarily focused on prompt design to incorporate user-specific profiles and behaviors; however, such approaches often struggle to generalize effectively due to their inability to capture shared knowledge among all users. To address these challenges, we propose HYDRA, a model factorization framework that captures both user-specific behavior patterns from historical data and shared general knowledge among all users to deliver personalized generation. In order to capture user-specific behavior patterns, we first train a reranker to prioritize the most useful information from top-retrieved relevant historical records. By combining the prioritized history with the corresponding query, we train an adapter to align the output with individual user-specific preferences, eliminating the reliance on access to inherent model parameters of black-box LLMs. Both the reranker and the adapter can be decomposed into a base model with multiple user-specific heads, resembling a hydra. The base model maintains shared knowledge across users, while the multiple personal heads capture user-specific preferences. Experimental results demonstrate that HYDRA outperforms existing state-of-the-art prompt-based methods by an average relative improvement of 9.01% across five diverse personalization tasks in the LaMP benchmark. Our implementation is available at https://github.com/night-chen/HYDRA.
EAVE: Efficient Product Attribute Value Extraction via Lightweight Sparse-layer Interaction
Yang, Li, Wang, Qifan, Chi, Jianfeng, Liu, Jiahao, Wang, Jingang, Feng, Fuli, Xu, Zenglin, Fang, Yi, Huang, Lifu, Liu, Dongfang
Product attribute value extraction involves identifying the specific values associated with various attributes from a product profile. While existing methods often prioritize the development of effective models to improve extraction performance, there has been limited emphasis on extraction efficiency. However, in real-world scenarios, products are typically associated with multiple attributes, necessitating multiple extractions to obtain all corresponding values. In this work, we propose an Efficient product Attribute Value Extraction (EAVE) approach via lightweight sparse-layer interaction. Specifically, we employ a heavy encoder to separately encode the product context and attribute. The resulting non-interacting heavy representations of the context can be cached and reused for all attributes. Additionally, we introduce a light encoder to jointly encode the context and the attribute, facilitating lightweight interactions between them. To enrich the interaction within the lightweight encoder, we design a sparse-layer interaction module to fuse the non-interacting heavy representation into the lightweight encoder. Comprehensive evaluation on two benchmarks demonstrate that our method achieves significant efficiency gains with neutral or marginal loss in performance when the context is long and number of attributes is large. Our code is available \href{https://anonymous.4open.science/r/EAVE-EA18}{here}.
Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism
Liu, Jiahao, Wang, Qifan, Wang, Jingang, Cai, Xunliang
The recent advancements in large language models (LLMs) have been extraordinary, yet the escalating inference costs associated with them present challenges in real-world applications. To address these challenges, we propose a novel approach called Early-exiting Speculative Decoding (EESD) with lossless acceleration. Specifically, EESD utilizes a segment of the LLM to generate draft tokens, incorporating Early-exiting structures after the first N layers. To enhance the quality of draft tokens, a self-distillation method is integrated. This early-exiting design not only reduces deployment and training costs but also significantly accelerates the token generation speed. Moreover, we introduce a novel sampling mechanism that leverages Thompson Sampling to regulate the generation processes, automatically determining the quantity of draft tokens in each round. The original LLM is then employed to validate these draft tokens through a single forward pass, and thus guarantees that the final output text maintains a distribution consistent with vanilla auto-regressive decoding. The experimental results on both 13B and 70B models demonstrate that our approach decodes tokens at a markedly accelerated rate compared to prior methods, showing the effectiveness of our approach.
Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection
Li, Moxin, Wang, Wenjie, Feng, Fuli, Zhu, Fengbin, Wang, Qifan, Chua, Tat-Seng
Self-detection for Large Language Model (LLM) seeks to evaluate the LLM output trustability by leveraging LLM's own capabilities, alleviating the output hallucination issue. However, existing self-detection approaches only retrospectively evaluate answers generated by LLM, typically leading to the over-trust in incorrectly generated answers. To tackle this limitation, we propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers. It thoroughly compares the trustability of multiple candidate answers to mitigate the over-trust in LLM-generated incorrect answers. Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer, and then aggregates the justifications for comprehensive target answer evaluation. This framework can be seamlessly integrated with existing approaches for superior self-detection. Extensive experiments on six datasets spanning three tasks demonstrate the effectiveness of the proposed framework.
Large Language Models are Learnable Planners for Long-Term Recommendation
Shi, Wentao, He, Xiangnan, Zhang, Yang, Gao, Chongming, Li, Xinyue, Zhang, Jizhi, Wang, Qifan, Feng, Fuli
Planning for both immediate and long-term benefits becomes increasingly important in recommendation. Existing methods apply Reinforcement Learning (RL) to learn planning capacity by maximizing cumulative reward for long-term recommendation. However, the scarcity of recommendation data presents challenges such as instability and susceptibility to overfitting when training RL models from scratch, resulting in sub-optimal performance. In this light, we propose to leverage the remarkable planning capabilities over sparse data of Large Language Models (LLMs) for long-term recommendation. The key to achieving the target lies in formulating a guidance plan following principles of enhancing long-term engagement and grounding the plan to effective and executable actions in a personalized manner. To this end, we propose a Bi-level Learnable LLM Planner framework, which consists of a set of LLM instances and breaks down the learning process into macro-learning and micro-learning to learn macro-level guidance and micro-level personalized recommendation policies, respectively. Extensive experiments validate that the framework facilitates the planning ability of LLMs for long-term recommendation. Our code and data can be found at https://github.com/jizhi-zhang/BiLLP.
Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration
Wu, Pengfei, Liu, Jiahao, Gong, Zhuocheng, Wang, Qifan, Li, Jinpeng, Wang, Jingang, Cai, Xunliang, Zhao, Dongyan
Large language models (LLMs) have recently shown remarkable performance across a wide range of tasks. However, the substantial number of parameters in LLMs contributes to significant latency during model inference. This is particularly evident when utilizing autoregressive decoding methods, which generate one token in a single forward process, thereby not fully capitalizing on the parallel computing capabilities of GPUs. In this paper, we propose a novel parallel decoding approach, namely \textit{hidden transfer}, which decodes multiple successive tokens simultaneously in a single forward pass. The idea is to transfer the intermediate hidden states of the previous context to the \textit{pseudo} hidden states of the future tokens to be generated, and then the pseudo hidden states will pass the following transformer layers thereby assimilating more semantic information and achieving superior predictive accuracy of the future tokens. Besides, we use the novel tree attention mechanism to simultaneously generate and verify multiple candidates of output sequences, which ensure the lossless generation and further improves the generation efficiency of our method. Experiments demonstrate the effectiveness of our method. We conduct a lot of analytic experiments to prove our motivation. In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models
Peng, Zhiyuan, Wu, Xuyang, Wang, Qifan, Rajanala, Sravanthi, Fang, Yi
Parameter Efficient Fine-Tuning (PEFT) methods have been extensively utilized in Large Language Models (LLMs) to improve the down-streaming tasks without the cost of fine-tuing the whole LLMs. Recent studies have shown how to effectively use PEFT for fine-tuning LLMs in ranking tasks with convincing performance; there are some limitations, including the learned prompt being fixed for different documents, overfitting to specific tasks, and low adaptation ability. In this paper, we introduce a query-dependent parameter efficient fine-tuning (Q-PEFT) approach for text reranking to leak the information of the true queries to LLMs and then make the generation of true queries from input documents much easier. Specifically, we utilize the query to extract the top-$k$ tokens from concatenated documents, serving as contextual clues. We further augment Q-PEFT by substituting the retrieval mechanism with a multi-head attention layer to achieve end-to-end training and cover all the tokens in the documents, guiding the LLMs to generate more document-specific synthetic queries, thereby further improving the reranking performance. Extensive experiments are conducted on four public datasets, demonstrating the effectiveness of our proposed approach.
Enhanced Federated Optimization: Adaptive Unbiased Sampling with Reduced Variance
Zeng, Dun, Xu, Zenglin, Pan, Yu, Luo, Xu, Wang, Qifan, Tang, Xiaoying
Federated Learning (FL) is a distributed learning paradigm to train a global model across multiple devices without collecting local data. In FL, a server typically selects a subset of clients for each training round to optimize resource usage. Central to this process is the technique of unbiased client sampling, which ensures a representative selection of clients. Current methods primarily utilize a random sampling procedure which, despite its effectiveness, achieves suboptimal efficiency owing to the loose upper bound caused by the sampling variance. In this work, by adopting an independent sampling procedure, we propose a federated optimization framework focused on adaptive unbiased client sampling, improving the convergence rate via an online variance reduction strategy. In particular, we present the first adaptive client sampler, K-Vib, employing an independent sampling procedure. K-Vib achieves a linear speed-up on the regret bound $\tilde{\mathcal{O}}\big(N^{\frac{1}{3}}T^{\frac{2}{3}}/K^{\frac{4}{3}}\big)$ within a set communication budget $K$. Empirical studies indicate that K-Vib doubles the speed compared to baseline algorithms, demonstrating significant potential in federated optimization.