Wang, Pu
A Lightweight Graph Transformer Network for Human Mesh Reconstruction from 2D Human Pose
Zheng, Ce, Mendieta, Matias, Wang, Pu, Lu, Aidong, Chen, Chen
Existing deep learning-based human mesh reconstruction approaches have a tendency to build larger networks in order to achieve higher accuracy. Computational complexity and model size are often neglected, despite being key characteristics for practical use of human mesh reconstruction models (e.g. virtual try-on systems). In this paper, we present GTRS, a lightweight pose-based method that can reconstruct human mesh from 2D human pose. We propose a pose analysis module that uses graph transformers to exploit structured and implicit joint correlations, and a mesh regression module that combines the extracted pose feature with the mesh template to reconstruct the final human mesh. We demonstrate the efficiency and generalization of GTRS by extensive evaluations on the Human3.6M and 3DPW datasets. In particular, GTRS achieves better accuracy than the SOTA pose-based method Pose2Mesh while only using 10.2% of the parameters (Params) and 2.5% of the FLOPs on the challenging in-the-wild 3DPW dataset. Code will be publicly available.
Sim-to-Real Transfer in Multi-agent Reinforcement Networking for Federated Edge Computing
Pinyoanuntapong, Pinyarash, Pothuneedi, Tagore, Balakrishnan, Ravikumar, Lee, Minwoo, Chen, Chen, Wang, Pu
Federated Learning (FL) over wireless multi-hop edge computing networks, i.e., multi-hop FL, is a cost-effective distributed on-device deep learning paradigm. This paper presents FedEdge simulator, a high-fidelity Linux-based simulator, which enables fast prototyping, sim-to-real code, and knowledge transfer for multi-hop FL systems. FedEdge simulator is built on top of the hardware-oriented FedEdge experimental framework with a new extension of the realistic physical layer emulator. This emulator exploits trace-based channel modeling and dynamic link scheduling to minimize the reality gap between the simulator and the physical testbed. Our initial experiments demonstrate the high fidelity of the FedEdge simulator and its superior performance on sim-to-real knowledge transfer in reinforcement learning-optimized multi-hop FL.
Deep CSI Learning for Gait Biometric Sensing and Recognition
Jakkala, Kalvik, Bhuya, Arupjyoti, Sun, Zhi, Wang, Pu, Cheng, Zhuo
Gait is a person's natural walking style and a complex biological process that is unique to each person. Recently, the channel state information (CSI) of WiFi devices have been exploited to capture human gait biometrics for user identification. However, the performance of existing CSI-based gait identification systems is far from satisfactory. They can only achieve limited identification accuracy (maximum $93\%$) only for a very small group of people (i.e., between 2 to 10). To address such challenge, an end-to-end deep CSI learning system is developed, which exploits deep neural networks to automatically learn the salient gait features in CSI data that are discriminative enough to distinguish different people Firstly, the raw CSI data are sanitized through window-based denoising, mean centering and normalization. The sanitized data is then passed to a residual deep convolutional neural network (DCNN), which automatically extracts the hierarchical features of gait-signatures embedded in the CSI data. Finally, a softmax classifier utilizes the extracted features to make the final prediction about the identity of the user. In a typical indoor environment, a top-1 accuracy of $97.12 \pm 1.13\%$ is achieved for a dataset of 30 people.
Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals
Fang, Jun, Shen, Yanning, Li, Hongbin, Wang, Pu
We consider the problem of recovering block-sparse signals whose structures are unknown \emph{a priori}. Block-sparse signals with nonzero coefficients occurring in clusters arise naturally in many practical scenarios. However, the knowledge of the block structure is usually unavailable in practice. In this paper, we develop a new sparse Bayesian learning method for recovery of block-sparse signals with unknown cluster patterns. Specifically, a pattern-coupled hierarchical Gaussian prior model is introduced to characterize the statistical dependencies among coefficients, in which a set of hyperparameters are employed to control the sparsity of signal coefficients. Unlike the conventional sparse Bayesian learning framework in which each individual hyperparameter is associated independently with each coefficient, in this paper, the prior for each coefficient not only involves its own hyperparameter, but also the hyperparameters of its immediate neighbors. In doing this way, the sparsity patterns of neighboring coefficients are related to each other and the hierarchical model has the potential to encourage structured-sparse solutions. The hyperparameters, along with the sparse signal, are learned by maximizing their posterior probability via an expectation-maximization (EM) algorithm. Numerical results show that the proposed algorithm presents uniform superiority over other existing methods in a series of experiments.