Goto

Collaborating Authors

 Wang, Pinghui


FortisAVQA and MAVEN: a Benchmark Dataset and Debiasing Framework for Robust Multimodal Reasoning

arXiv.org Artificial Intelligence

--Audio-Visual Question Answering (A VQA) is a challenging multimodal reasoning task requiring intelligent systems to answer natural language queries based on paired audio-video inputs accurately. However, existing A VQA approaches often suffer from overfitting to dataset biases, leading to poor robustness. T o address these challenges, we first introduce a novel dataset, FortisA VQA, constructed in two stages: (1) rephrasing questions in the test split of the public MUSIC-A VQA dataset and (2) introducing distribution shifts across questions. The first stage expands the test space with greater diversity, while the second enables a refined robustness evaluation across rare, frequent, and overall question distributions. Second, we introduce a robust Multimodal Audio-Visual Epistemic Network (MA VEN) that leverages a multifaceted cycle collaborative debiasing strategy to mitigate bias learning. Experimental results demonstrate that our architecture achieves state-of-the-art performance on FortisA VQA, with a notable improvement of 7.81%. Additionally, our evaluation reveals the limited robustness of existing multimodal QA methods. We also verify the plug-and-play capability of our strategy by integrating it with various baseline models across both datasets. UMANS possess the extraordinary capacity to seam-lessly integrate auditory and visual cues, effectively establishing a cohesive relationship between visual and auditory stimuli [1-3]. Jie Ma, Pinghui Wang, Jing Tao and Zhou Su are with the Ministry of Education of Key Laboratory for Intelligent Networks and Network Security, School of Cyber Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Zhitao Gao and Jun Liu are with the Shannxi Provincial Key Laboratory of Big Data Knowledge Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Qi Chai is with the Information Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 510000, China. The question in current A VQA datasets is generated by a limited set of predefined templates, which may not be in line with the real-world scenario. Our findings indicate that existing methods such as STG [6] are not robust, which may be attributed to excessive bias learning, such as memorizing statistical regularities between critical question words and answers. It requires the system to learn high-order interaction representations of the concepts encompassed with audio, video, and language modalities. As is known to us [8-10], the high-level reasoning ability of the system mainly relies on large-scale data that does not contain harmful biases or statistical regularities. However, completely avoiding the negative bias in datasets seems challenging [11] due to the inherent skewness in real-world data distributions.


How Vital is the Jurisprudential Relevance: Law Article Intervened Legal Case Retrieval and Matching

arXiv.org Artificial Intelligence

Legal case retrieval (LCR) aims to automatically scour for comparable legal cases based on a given query, which is crucial for offering relevant precedents to support the judgment in intelligent legal systems. Due to similar goals, it is often associated with a similar case matching (LCM) task. To address them, a daunting challenge is assessing the uniquely defined legal-rational similarity within the judicial domain, which distinctly deviates from the semantic similarities in general text retrieval. Past works either tagged domain-specific factors or incorporated reference laws to capture legal-rational information. However, their heavy reliance on expert or unrealistic assumptions restricts their practical applicability in real-world scenarios. In this paper, we propose an end-to-end model named LCM-LAI to solve the above challenges. Through meticulous theoretical analysis, LCM-LAI employs a dependent multi-task learning framework to capture legal-rational information within legal cases by a law article prediction (LAP) sub-task, without any additional assumptions in inference. Besides, LCM-LAI proposes an article-aware attention mechanism to evaluate the legal-rational similarity between across-case sentences based on law distribution, which is more effective than conventional semantic similarity. Weperform a series of exhaustive experiments including two different tasks involving four real-world datasets. Results demonstrate that LCM-LAI achieves state-of-the-art performance.


Representation Learning of Tangled Key-Value Sequence Data for Early Classification

arXiv.org Artificial Intelligence

Key-value sequence data has become ubiquitous and naturally appears in a variety of real-world applications, ranging from the user-product purchasing sequences in e-commerce, to network packet sequences forwarded by routers in networking. Classifying these key-value sequences is important in many scenarios such as user profiling and malicious applications identification. In many time-sensitive scenarios, besides the requirement of classifying a key-value sequence accurately, it is also desired to classify a key-value sequence early, in order to respond fast. However, these two goals are conflicting in nature, and it is challenging to achieve them simultaneously. In this work, we formulate a novel tangled key-value sequence early classification problem, where a tangled key-value sequence is a mixture of several concurrent key-value sequences with different keys. The goal is to classify each individual key-value sequence sharing a same key both accurately and early. To address this problem, we propose a novel method, i.e., Key-Value sequence Early Co-classification (KVEC), which leverages both inner- and inter-correlations of items in a tangled key-value sequence through key correlation and value correlation to learn a better sequence representation. Meanwhile, a time-aware halting policy decides when to stop the ongoing key-value sequence and classify it based on current sequence representation. Experiments on both real-world and synthetic datasets demonstrate that our method outperforms the state-of-the-art baselines significantly. KVEC improves the prediction accuracy by up to $4.7 - 17.5\%$ under the same prediction earliness condition, and improves the harmonic mean of accuracy and earliness by up to $3.7 - 14.0\%$.


MERGE: Fast Private Text Generation

arXiv.org Artificial Intelligence

The drastic increase in language models' parameters has led to a new trend of deploying models in cloud servers, raising growing concerns about private inference for Transformer-based models. Existing two-party privacy-preserving techniques, however, only take into account natural language understanding (NLU) scenarios. Private inference in natural language generation (NLG), crucial for applications like translation and code completion, remains underexplored.In addition, previous privacy-preserving techniques suffer from convergence issues during model training and exhibit poor inference speed when used with NLG models due to the neglect of time-consuming operations in auto-regressive generations. To address these issues, we propose a fast private text generation framework for Transformer-based language models, namely MERGE.MERGE reuses the output hidden state as the word embedding to bypass the embedding computation and reorganize the linear operations in the Transformer module to accelerate the forward procedure. Extensive experiments show that MERGE achieves a 26.5x speedup to the vanilla encrypted model under the sequence length 512, and reduces 80\% communication cost, with an up to 10x speedup to state-of-the-art approximated models.


Adaptive loose optimization for robust question answering

arXiv.org Artificial Intelligence

Question answering methods are well-known for leveraging data bias, such as the language prior in visual question answering and the position bias in machine reading comprehension (extractive question answering). Current debiasing methods often come at the cost of significant in-distribution performance to achieve favorable out-of-distribution generalizability, while non-debiasing methods sacrifice a considerable amount of out-of-distribution performance in order to obtain high in-distribution performance. Therefore, it is challenging for them to deal with the complicated changing real-world situations. In this paper, we propose a simple yet effective novel loss function with adaptive loose optimization, which seeks to make the best of both worlds for question answering. Our main technical contribution is to reduce the loss adaptively according to the ratio between the previous and current optimization state on mini-batch training data. This loose optimization can be used to prevent non-debiasing methods from overlearning data bias while enabling debiasing methods to maintain slight bias learning. Experiments on the visual question answering datasets, including VQA v2, VQA-CP v1, VQA-CP v2, GQA-OOD, and the extractive question answering dataset SQuAD demonstrate that our approach enables QA methods to obtain state-of-the-art in- and out-of-distribution performance in most cases. The source code has been released publicly in \url{https://github.com/reml-group/ALO}.


Robust Visual Question Answering: Datasets, Methods, and Future Challenges

arXiv.org Artificial Intelligence

Abstract--Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often exhibit a tendency to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers. Therefore, these methods usually achieve high in-distribution but poor out-of-distribution performance. In recent years, various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively. This paper provides the first comprehensive survey focused on this emerging fashion. Specifically, we first provide an overview of the development process of datasets from in-distribution and out-of-distribution perspectives. Then, we examine the evaluation metrics employed by these datasets. Thirdly, we propose a typology that presents the development process, similarities and differences, robustness comparison, and technical features of existing debiasing methods. Furthermore, we analyze and discuss the robustness of representative vision-and-language pre-training models on VQA. Finally, through a thorough review of the available literature and experimental analysis, we discuss the key areas for future research from various viewpoints. Question Answering (VQA) aims to build intelligent machines that are able to provide a natural views. Second, a variety of VQA methods have language answer accurately given an image and a natural been proposed, which can be classified into three groups language question about the image [1].


Healing Unsafe Dialogue Responses with Weak Supervision Signals

arXiv.org Artificial Intelligence

Recent years have seen increasing concerns about the unsafe response generation of large-scale dialogue systems, where agents will learn offensive or biased behaviors from the real-world corpus. Some methods are proposed to address the above issue by detecting and replacing unsafe training examples in a pipeline style. Though effective, they suffer from a high annotation cost and adapt poorly to unseen scenarios as well as adversarial attacks. Besides, the neglect of providing safe responses (e.g. simply replacing with templates) will cause the information-missing problem of dialogues. To address these issues, we propose an unsupervised pseudo-label sampling method, TEMP, that can automatically assign potential safe responses. Specifically, our TEMP method groups responses into several clusters and samples multiple labels with an adaptively sharpened sampling strategy, inspired by the observation that unsafe samples in the clusters are usually few and distribute in the tail. Extensive experiments in chitchat and task-oriented dialogues show that our TEMP outperforms state-of-the-art models with weak supervision signals and obtains comparable results under unsupervised learning settings.


Multi-Action Dialog Policy Learning from Logged User Feedback

arXiv.org Artificial Intelligence

Multi-action dialog policy, which generates multiple atomic dialog actions per turn, has been widely applied in task-oriented dialog systems to provide expressive and efficient system responses. Existing policy models usually imitate action combinations from the labeled multi-action dialog examples. Due to data limitations, they generalize poorly toward unseen dialog flows. While reinforcement learning-based methods are proposed to incorporate the service ratings from real users and user simulators as external supervision signals, they suffer from sparse and less credible dialog-level rewards. To cope with this problem, we explore to improve multi-action dialog policy learning with explicit and implicit turn-level user feedback received for historical predictions (i.e., logged user feedback) that are cost-efficient to collect and faithful to real-world scenarios. The task is challenging since the logged user feedback provides only partial label feedback limited to the particular historical dialog actions predicted by the agent. To fully exploit such feedback information, we propose BanditMatch, which addresses the task from a feedback-enhanced semi-supervised learning perspective with a hybrid objective of semi-supervised learning and bandit learning. BanditMatch integrates pseudo-labeling methods to better explore the action space through constructing full label feedback. Extensive experiments show that our BanditMatch outperforms the state-of-the-art methods by generating more concise and informative responses. The source code and the appendix of this paper can be obtained from https://github.com/ShuoZhangXJTU/BanditMatch.


Fast Gumbel-Max Sketch and its Applications

arXiv.org Artificial Intelligence

The well-known Gumbel-Max Trick for sampling elements from a categorical distribution (or more generally a non-negative vector) and its variants have been widely used in areas such as machine learning and information retrieval. To sample a random element $i$ in proportion to its positive weight $v_i$, the Gumbel-Max Trick first computes a Gumbel random variable $g_i$ for each positive weight element $i$, and then samples the element $i$ with the largest value of $g_i+\ln v_i$. Recently, applications including similarity estimation and weighted cardinality estimation require to generate $k$ independent Gumbel-Max variables from high dimensional vectors. However, it is computationally expensive for a large $k$ (e.g., hundreds or even thousands) when using the traditional Gumbel-Max Trick. To solve this problem, we propose a novel algorithm, FastGM, which reduces the time complexity from $O(kn^+)$ to $O(k \ln k + n^+)$, where $n^+$ is the number of positive elements in the vector of interest. FastGM stops the procedure of Gumbel random variables computing for many elements, especially for those with small weights. We perform experiments on a variety of real-world datasets and the experimental results demonstrate that FastGM is orders of magnitude faster than state-of-the-art methods without sacrificing accuracy or incurring additional expenses.


Federated Learning over Coupled Graphs

arXiv.org Artificial Intelligence

Graphs are widely used to represent the relations among entities. When one owns the complete data, an entire graph can be easily built, therefore performing analysis on the graph is straightforward. However, in many scenarios, it is impractical to centralize the data due to data privacy concerns. An organization or party only keeps a part of the whole graph data, i.e., graph data is isolated from different parties. Recently, Federated Learning (FL) has been proposed to solve the data isolation issue, mainly for Euclidean data. It is still a challenge to apply FL on graph data because graphs contain topological information which is notorious for its non-IID nature and is hard to partition. In this work, we propose a novel FL framework for graph data, FedCog, to efficiently handle coupled graphs that are a kind of distributed graph data, but widely exist in a variety of real-world applications such as mobile carriers' communication networks and banks' transaction networks. We theoretically prove the correctness and security of FedCog. Experimental results demonstrate that our method FedCog significantly outperforms traditional FL methods on graphs. Remarkably, our FedCog improves the accuracy of node classification tasks by up to 14.7%.